v_em <- emulator_from_data(BirthDeath$training,
c('Y'),
list(lambda = c(0, 0.08), mu = c(0.04, 0.13)),
verbose = FALSE, beta.var = TRUE,
emulator_type = "variance")
test_that("Variance Emulators", {
expect_equal(
class(v_em$expectation$Y),
c("Hierarchical", "Emulator", "R6")
)
expect_equal(
v_em$expectation$Y$em_type,
"mean"
)
expect_equal(
v_em$variance$Y$em_type,
"variance"
)
})
test_that("Batch runs", {
many_points <- data.frame(lambda = runif(1400, 0, 0.08),
mu = runif(1400, 0.04, 0.13))
expect_equal(
length(c(v_em$variance$Y$get_exp(many_points))),
1400
)
expect_equal(
length(c(v_em$expectation$Y$get_cov(many_points))),
1400
)
expect_equal(
length(c(v_em$expectation$Y$implausibility(many_points,
list(Y = c(90, 110))$Y))),
1400
)
})
em <- v_em$variance$Y
test_train <- unique(BirthDeath$training[,c('lambda', 'mu')])[1:5,]
test_points <- unique(BirthDeath$validation[,c('lambda', 'mu')])[1:5,]
test_that("Modifying priors and functional sigma", {
em_2 <- em$set_sigma(2)
expect_equal(
em_2$u_sigma,
2
)
em_3 <- em_2$mult_sigma(2)
expect_equal(
em_3$u_sigma,
4
)
em_4 <- em_2$set_hyperparams(
hp = list(theta = 0.75),
nugget = 0.1
)
expect_equal(
em_4$corr$hyper_p$theta,
0.75
)
expect_equal(
em_4$corr$nugget,
0.1
)
em_sigma <- em$set_sigma(function(x) x[[1]]*5)
expect_false(
all(em_sigma$get_cov(test_train) == 0)
)
expect_equal(
dim(em_sigma$get_cov(test_train[1:3,],
test_train[2:5,],
full = TRUE, check_neg = FALSE)),
c(3, 4)
)
em_sigma_2 <- em_sigma$mult_sigma(2)
expect_equal(
em_sigma_2$u_sigma(c(0.01, 0)),
0.1
)
})
test_that("Modifying priors and functional sigma - untrained", {
em_o <- em$o_em
em_o2 <- em_o$set_sigma(2)
expect_equal(
em_o2$u_sigma,
2
)
em_o3 <- em_o2$mult_sigma(2)
expect_equal(
unname(em_o3$get_cov(test_points[1,,drop=FALSE])),
359.2923,
tolerance = 1e-4
)
expect_equal(
em_o3$u_sigma,
2
)
em_o4 <- em_o2$set_hyperparams(
hp = list(theta = 0.7),
nugget = 0.3
)
expect_equal(
em_o4$corr$hyper_p$theta,
0.7
)
expect_equal(
em_o4$corr$nugget,
0.3
)
})
test_that("Printing works", {
expect_output(
print(em),
"Parameters and ranges"
)
expect_output(
print(em),
"Regression surface Variance"
)
expect_output(
print(em),
"Bayes-adjusted emulator - prior specifications listed"
)
})
### Covariance Emulation
test_that("Covariance emulation building - basic", {
cov_ems <- emulator_from_data(
SIR_stochastic$training, c("I10", "I25", "R10", "R25"),
list(aSI = c(0.1, 0.8), aIR = c(0, 0.5), aSR = c(0, 0.05)),
emulator_type = "covariance", verbose = FALSE
)
expect_equal(
dim(cov_ems$variance$get_matrix()),
c(4,4)
)
expect_equal(
class(cov_ems$variance),
c("EmulatorMatrix", "R6")
)
})
test_that("Covariance emulation building - specified covariance elements", {
cov_ems_spec <- emulator_from_data(
SIR_stochastic$training, c("I10", "I25", "R10", "R25"),
list(aSI = c(0.1, 0.8), aIR = c(0, 0.5), aSR = c(0, 0.05)),
verbose = FALSE,
emulator_type = "covariance", covariance_opts = list(
matrix = matrix(c(TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE,
TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE), nrow = 4))
)
expect_equal(
class(cov_ems_spec$variance$get_matrix()[[2,3]]),
c("EmProto", "Emulator", "R6")
)
cov_preds <- cov_ems_spec$variance$get_exp(unique(SIR_stochastic$training[,1:3])[1:3,])
expect_equal(
dim(cov_preds),
c(4,4,3)
)
expect_true(
all(apply(cov_preds, 3, function(x) all(round(eigen(x)$values, 6) >= 0)))
)
cov_covs <- cov_ems_spec$variance$get_cov(unique(SIR_stochastic$training[,1:3])[1:3,])
expect_equal(
dim(cov_covs),
c(4,4,3)
)
cov_uncert <- cov_ems_spec$variance$get_uncertainty(unique(SIR_stochastic$training[,1:3])[1:3,],
cov_ems_spec$expectation)
expect_equal(
dim(cov_uncert),
c(4,4,3)
)
})
test_that("Variance emulation - point proposal", {
pts <- generate_new_design(v_em, 100, list(Y = c(90, 105)), verbose = FALSE)
expect_equal(
nrow(pts),
100
)
})
test_that("Variance emulation - point proposal with seek_good", {
skip_on_cran()
pts <- generate_new_design(v_em, 100, list(Y = c(90, 105)), verbose = FALSE,
opts = list(seek = 10))
expect_equal(
nrow(pts),
100
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.