newBoxPD <- function(.dt = data.table::data.table(),
variables = veupathUtils::VariableMetadataList(),
points = character(),
mean = logical(),
computeStats = logical(),
overlayValues = veupathUtils::BinList(),
sampleSizes = logical(),
completeCases = logical(),
evilMode = character(),
verbose = logical(),
...,
class = character()) {
.pd <- newPlotdata(.dt = .dt,
variables = variables,
overlayValues = overlayValues,
sampleSizes = sampleSizes,
completeCases = completeCases,
inferredVarAxis = 'y',
evilMode = evilMode,
verbose = verbose,
class = "boxplot")
attr <- attributes(.pd)
variables <- attr$variables
x <- veupathUtils::findColNamesFromPlotRef(variables, 'xAxis')
y <- veupathUtils::findColNamesFromPlotRef(variables, 'yAxis')
group <- veupathUtils::findColNamesFromPlotRef(variables, 'overlay')
panel <- findPanelColName(veupathUtils::findVariableSpecFromPlotRef(variables, 'facet1'),
veupathUtils::findVariableSpecFromPlotRef(variables, 'facet2'))
.pd[[x]] <- as.character(.pd[[x]])
summary <- groupSummary(.pd, x, y, group, panel)
fences <- groupFences(.pd, x, y, group, panel)
fences <- fences[, -x, with = FALSE]
veupathUtils::logWithTime('Calculated five-number summaries and upper and lower fences for boxplot.', verbose)
isEvil <- ifelse(evilMode %in% c('allVariables', 'strataVariables'), TRUE, FALSE)
if (!isEvil && computeStats) {
if (is.null(group)) {
# If no overlay, then compute across x per panel
statsTable <- nonparametricByGroup(.pd, numericCol=y, levelsCol=x, byCols=panel)
} else {
# compute across overlay values per panel
statsTable <- nonparametricByGroup(.pd, numericCol=y, levelsCol=group, byCols=c(x, panel))
}
attr$statsTable <- statsTable
veupathUtils::logWithTime('Calculated boxplot supporting statistics.', verbose)
}
if (!is.null(key(summary))) {
.pd.base <- merge(summary, fences)
} else {
.pd.base <- cbind(summary, fences)
}
if (points == 'outliers') {
outliers <- groupOutliers(.pd, x, y, group, panel)
outliers[[x]] <- NULL
if (!is.null(key(outliers))) {
.pd.base <- merge(.pd.base, outliers)
} else {
.pd.base <- cbind(.pd.base, outliers)
}
veupathUtils::logWithTime('Identified outliers for boxplot.', verbose)
} else if (points == 'all') {
byCols <- colnames(.pd)[colnames(.pd) %in% c(x, group, panel)]
rawData <- .pd[, list(rawData=lapply(.SD, as.vector)), keyby=byCols]
byColValues <- unique(.pd[, byCols, with=FALSE])
rawData <- merge(rawData, byColValues, by=byCols, all=TRUE)
rawData <- collapseByGroup(rawData, group, panel)
rawData[[x]] <- NULL
indexCols <- c(panel, group)
setkeyv(rawData, indexCols)
if (!is.null(key(rawData))) {
.pd.base <- merge(.pd.base, rawData)
} else {
.pd.base <- cbind(.pd.base, rawData)
}
veupathUtils::logWithTime('Returning all points for boxplot.', verbose)
}
if (mean) {
mean <- groupMean(.pd, x, y, group, panel)
mean[[x]] <- NULL
if (!is.null(key(mean))) {
.pd.base <- merge(.pd.base, mean)
} else {
.pd.base <- cbind(.pd.base, mean)
}
veupathUtils::logWithTime('Calculated means for boxplot.', verbose)
}
.pd <- .pd.base
data.table::setnames(.pd, x, 'label')
attr$names <- names(.pd)
veupathUtils::setAttrFromList(.pd, attr)
return(.pd)
}
validateBoxPD <- function(.box, verbose) {
variables <- attr(.box, 'variables')
if (!veupathUtils::findDataTypesFromPlotRef(variables, 'yAxis') %in% c('NUMBER', 'INTEGER')) {
stop('The dependent axis must be of type number or integer for boxplot.')
}
veupathUtils::logWithTime('Boxplot request has been validated!', verbose)
return(.box)
}
#' Box Plot as data.table
#'
#' This function returns a data.table of
#' plot-ready data with one row per group (per panel). Columns
#' 'x', 'min', 'q1', 'median', 'q3' and 'max' represent the
#' pre-computed values per group. Columns 'group' and 'panel' specify
#' the group the data belong to.
#' Optionally, can return columns 'outliers' and 'mean' as well.
#'
#' @section Evil Mode:
#' An `evilMode` exists. It will do the following: \cr
#' - when `strataVariables` it will return 'no data' as a regular value for strata vars but will discard such cases for the axes vars. \cr
#' - when `allVariables` it will return 'no data' as a regular value for all variables. \cr
#' - when `noVariables` it will do the sensible thing and return complete cases only. \cr
#' - not return statsTables \cr
#' - allow smoothed means and agg values etc over axes values where we have no data for the strata vars \cr
#' - return a total count of plotted incomplete cases \cr
#' - represent missingness poorly, conflate the stories of completeness and missingness, mislead you and steal your soul \cr
#' @param data data.frame to make plot-ready data for
#' @param variables veupathUtils VariableMetadataList
#' @param points character vector indicating which points to return 'outliers' or 'all'
#' @param mean boolean indicating whether to return mean value per group (per panel)
#' @param computeStats boolean indicating whether to compute nonparametric statistical tests (across x values or group values per panel)
#' @param overlayValues veupathUtils::BinList providing overlay values of interest
#' @param sampleSizes boolean indicating if sample sizes should be computed
#' @param completeCases boolean indicating if complete cases should be computed
#' @param evilMode String indicating how evil this plot is ('strataVariables', 'allVariables', 'noVariables')
#' Metadata can include 'displayName', 'displayRangeMin', 'displayRangeMax', and 'collectionVariable'. Will be included as an attribute of the returned plot object.
#' @param verbose boolean indicating if timed logging is desired
#' @return data.table plot-ready data
#' @examples
#' # Construct example data
#' df <- data.table('entity.xvar' = sample(c('a','b','c'), 100, replace=T),
#' 'entity.yvar' = rnorm(100),
#' 'entity.overlay' = sample(c('red','green','blue'), 100, replace=T))
#'
#' # Create VariableMetadataList that specifies variable role in the plot and supplies variable metadata
#' variables <- veupathUtils::VariableMetadataList(
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'xvar', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'xAxis'),
#' dataType = veupathUtils::DataType(value = 'STRING'),
#' dataShape = veupathUtils::DataShape(value = 'CATEGORICAL')
#' ),
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'overlay', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'overlay'),
#' dataType = veupathUtils::DataType(value = 'STRING'),
#' dataShape = veupathUtils::DataShape(value = 'CATEGORICAL')
#' ),
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'yvar', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'yAxis'),
#' dataType = veupathUtils::DataType(value = 'NUMBER'),
#' dataShape = veupathUtils::DataShape(value = 'CONTINUOUS')
#' )
#' )
#'
#' # Returns a data table with plot-ready data
#' dt <- box.dt(df, map, points = 'outliers', mean=F, computeStats=T)
#' @export
box.dt <- function(data, variables,
points = c('outliers', 'all', 'none'),
mean = c(FALSE, TRUE),
computeStats = c(FALSE, TRUE),
overlayValues = NULL,
sampleSizes = c(TRUE, FALSE),
completeCases = c(TRUE, FALSE),
evilMode = c('noVariables', 'allVariables', 'strataVariables'),
verbose = c(TRUE, FALSE)) {
points <- veupathUtils::matchArg(points)
mean <- veupathUtils::matchArg(mean)
computeStats <- veupathUtils::matchArg(computeStats)
sampleSizes <- veupathUtils::matchArg(sampleSizes)
completeCases <- veupathUtils::matchArg(completeCases)
evilMode <- veupathUtils::matchArg(evilMode)
verbose <- veupathUtils::matchArg(verbose)
isEvil <- ifelse(evilMode %in% c('allVariables', 'strataVariables'), TRUE, FALSE)
if (isEvil && computeStats) {
warning('evilModes `allVariables` and `strataVariables` are not compatible with computeStats! computeStats will be ignored!')
}
if (!'data.table' %in% class(data)) {
data.table::setDT(data)
}
xVM <- veupathUtils::findVariableMetadataFromPlotRef(variables, 'xAxis')
if (is.null(xVM)) {
stop("Must provide x-axis variable for plot type box.")
}
yVM <- veupathUtils::findVariableMetadataFromPlotRef(variables, 'yAxis')
collectionVM <- veupathUtils::findCollectionVariableMetadata(variables)
if (is.null(yVM) & is.null(collectionVM)) {
stop("Must provide y-axis variable for plot type box.")
}
# Handle collectionVars
if (!is.null(collectionVM)) {
if (!collectionVM@plotReference@value %in% c('xAxis', 'facet1', 'facet2')) stop('Collection variable PlotReference must be either xAxis, facet1, or facet2 for boxplot.')
}
.box <- newBoxPD(.dt = data,
variables = variables,
points = points,
mean = mean,
computeStats = computeStats,
overlayValues = overlayValues,
sampleSizes = sampleSizes,
completeCases = completeCases,
evilMode = evilMode,
verbose = verbose)
.box <- validateBoxPD(.box, verbose)
veupathUtils::logWithTime(paste('New boxplot object created with parameters points =', points,
', mean =', mean,
', computeStats =', computeStats,
', sampleSizes = ', sampleSizes,
', completeCases = ', completeCases,
', evilMode =', evilMode,
', verbose =', verbose), verbose)
return(.box)
}
#' Box Plot data file
#'
#' This function returns the name of a json file containing
#' plot-ready data with one row per group (per panel). Columns
#' 'x', 'min', 'q1', 'median', 'q3' and 'max' represent the
#' pre-computed values per group. Columns 'group' and 'panel' specify
#' the group the data belong to.
#' Optionally, can return columns 'outliers' and 'mean' as well.
#'
#' @section Evil Mode:
#' An `evilMode` exists. It will do the following: \cr
#' - when `strataVariables` it will return 'no data' as a regular value for strata vars but will discard such cases for the axes vars. \cr
#' - when `allVariables` it will return 'no data' as a regular value for all variables. \cr
#' - when `noVariables` it will do the sensible thing and return complete cases only. \cr
#' - not return statsTables \cr
#' - allow smoothed means and agg values etc over axes values where we have no data for the strata vars \cr
#' - return a total count of plotted incomplete cases \cr
#' - represent missingness poorly, conflate the stories of completeness and missingness, mislead you and steal your soul \cr
#' @param data data.frame to make plot-ready data for
#' @param variables veupathUtils VariableMetadataList
#' @param points character vector indicating which points to return 'outliers' or 'all'
#' @param mean boolean indicating whether to return mean value per group (per panel)
#' @param computeStats boolean indicating whether to compute nonparametric statistical tests (across x values or group values per panel)
#' @param overlayValues veupathUtils::BinList providing overlay values of interest
#' @param sampleSizes boolean indicating if sample sizes should be computed
#' @param completeCases boolean indicating if complete cases should be computed
#' @param evilMode String indicating how evil this plot is ('strataVariables', 'allVariables', 'noVariables')
#' @param verbose boolean indicating if timed logging is desired
#' @return character name of json file containing plot-ready data
#' @examples
#' # Construct example data
#' df <- data.table('entity.xvar' = sample(c('a','b','c'), 100, replace=T),
#' 'entity.yvar' = rnorm(100),
#' 'entity.overlay' = sample(c('red','green','blue'), 100, replace=T))
#'
#' # Create VariableMetadataList that specifies variable role in the plot and supplies variable metadata
#' variables <- veupathUtils::VariableMetadataList(
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'xvar', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'xAxis'),
#' dataType = veupathUtils::DataType(value = 'STRING'),
#' dataShape = veupathUtils::DataShape(value = 'CATEGORICAL')
#' ),
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'overlay', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'overlay'),
#' dataType = veupathUtils::DataType(value = 'STRING'),
#' dataShape = veupathUtils::DataShape(value = 'CATEGORICAL')
#' ),
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'yvar', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'yAxis'),
#' dataType = veupathUtils::DataType(value = 'NUMBER'),
#' dataShape = veupathUtils::DataShape(value = 'CONTINUOUS')
#' )
#' )
#'
#' # Returns the name of a json file
#' box(df, map, points = 'outliers', mean=F, computeStats=T)
#' @export
box <- function(data, variables,
points = c('outliers', 'all', 'none'),
mean = c(FALSE, TRUE),
computeStats = c(FALSE, TRUE),
overlayValues = NULL,
sampleSizes = c(TRUE, FALSE),
completeCases = c(TRUE, FALSE),
evilMode = c('noVariables', 'allVariables', 'strataVariables'),
verbose = c(TRUE, FALSE)) {
verbose <- veupathUtils::matchArg(verbose)
.box <- box.dt(data,
variables = variables,
points = points,
mean = mean,
computeStats = computeStats,
overlayValues = overlayValues,
sampleSizes = sampleSizes,
completeCases = completeCases,
evilMode = evilMode,
verbose = verbose)
outFileName <- writeJSON(.box, evilMode, 'boxplot', verbose)
return(outFileName)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.