context('scattergl')
test_that("scatter.dt does not fail when there are no complete cases.", {
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'int', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cont', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
df <- data.noneComplete[is.na(entity.int),]
dt <- scattergl.dt(df, variables, 'raw')
attr <- attributes(dt)
expect_equal(attr$completeCasesAllVars[1], 0)
expect_equal(is.list(dt$seriesX), TRUE)
expect_equal(is.list(dt$seriesY), TRUE)
dt <- scattergl.dt(df, variables, value='smoothedMeanWithRaw')
attr <- attributes(dt)
expect_equal(attr$completeCasesAllVars[1], 0)
expect_equal(is.list(dt$seriesX), TRUE)
expect_equal(is.list(dt$seriesY), TRUE)
dt <- scattergl.dt(df, variables, value='bestFitLineWithRaw')
attr <- attributes(dt)
expect_equal(attr$completeCasesAllVars[1], 0)
expect_equal(is.list(dt$seriesX), TRUE)
expect_equal(is.list(dt$seriesY), TRUE)
dt <- scattergl.dt(df, variables, value='density')
attr <- attributes(dt)
expect_equal(attr$completeCasesAllVars[1], 0)
expect_equal(is.list(dt$densityX), TRUE)
expect_equal(is.list(dt$densityY), TRUE)
# dt <- scattergl.dt(df, variables, value='raw', correlationMethod = 'pearson')
# attr <- attributes(dt)
# expect_equal(attr$completeCasesAllVars[1], 0)
# expect_equal(is.list(dt$seriesX), TRUE)
# expect_equal(is.list(dt$seriesY), TRUE)
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'int', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cont', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'binary2', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
df <- data.noneComplete
dt <- scattergl.dt(df, variables, 'raw')
attr <- attributes(dt)
expect_equal(attr$completeCasesAllVars[1], 0)
expect_equal(is.list(dt$seriesX), TRUE)
expect_equal(is.list(dt$seriesY), TRUE)
})
test_that("scattergl.dt() returns a valid plot.data scatter object", {
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
df <- as.data.frame(testDF)
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'plot.data')
expect_is(dt, 'scatterplot')
namedAttrList <- getPDAttributes(dt)
expect_equal(names(namedAttrList),c('variables', 'completeCasesAllVars','completeCasesAxesVars','completeCasesTable','sampleSizeTable'))
completeCases <- completeCasesTable(dt)
expect_equal(names(completeCases), c('variableDetails','completeCases'))
expect_equal(nrow(completeCases), 4)
sampleSizes <- sampleSizeTable(dt)
expect_equal(names(sampleSizes), c('entity.cat3','entity.cat4','size'))
expect_equal(nrow(sampleSizes), 12)
# Ensure sampleSizeTable and completeCasesTable do not get returned if we do not ask for them.
dt <- scattergl.dt(df, variables, 'raw', sampleSizes = FALSE, completeCases = FALSE)
expect_is(dt, 'plot.data')
expect_is(dt, 'scatterplot')
namedAttrList <- getPDAttributes(dt)
expect_equal(names(namedAttrList),c('variables'))
# make sure correlation coef and pvalue is returned if there is a correlationMethod
# dt <- scattergl.dt(df, variables, 'raw', correlationMethod = 'pearson')
# expect_is(dt, 'plot.data')
# expect_is(dt, 'scatterplot')
# namedAttrList <- getPDAttributes(dt)
# expect_equal(names(namedAttrList),c('variables', 'completeCasesAllVars','completeCasesAxesVars','completeCasesTable','sampleSizeTable','correlationMethod'))
# expect_equal(length(namedAttrList$correlationMethod), 1)
})
test_that("scattergl.dt() returns plot data and config of the appropriate types", {
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'dateA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'DATE'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
df <- as.data.frame(testDF)
dt <- scattergl.dt(df, variables, 'raw')
expect_equal(class(unlist(dt$entity.cat4)), 'character')
expect_equal(class(unlist(dt$entity.cat3)), 'character')
expect_equal(class(unlist(dt$seriesX)), 'character')
expect_equal(class(unlist(dt$seriesY)), 'character')
namedAttrList <- getPDAttributes(dt)
expect_equal(class(namedAttrList$completeCasesAllVars),c('scalar', 'integer'))
expect_equal(class(namedAttrList$completeCasesAxesVars),c('scalar', 'integer'))
completeCases <- completeCasesTable(dt)
expect_equal(class(unlist(completeCases$variableDetails)), 'character')
expect_equal(class(unlist(completeCases$completeCases)), 'integer')
sampleSizes <- sampleSizeTable(dt)
expect_equal(class(unlist(sampleSizes$entity.cat4)), 'character')
expect_equal(class(unlist(sampleSizes$size)), 'integer')
# check types of correlation results when there is a correlationMethod
# dt <- scattergl.dt(df, variables, 'raw', correlationMethod = 'pearson')
# expect_equal(class(dt$correlationCoef), 'numeric')
# expect_equal(class(dt$pValue), 'numeric')
# namedAttrList <- getPDAttributes(dt)
# expect_equal(class(namedAttrList$correlationMethod),c('scalar', 'character'))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_equal(class(unlist(dt$entity.cat4)), 'character')
expect_equal(class(unlist(dt$entity.cat3)), 'character')
expect_equal(class(unlist(dt$seriesX)), 'character')
expect_equal(class(unlist(dt$seriesY)), 'character')
namedAttrList <- getPDAttributes(dt)
expect_equal(class(namedAttrList$completeCasesAllVars),c('scalar', 'integer'))
expect_equal(class(namedAttrList$completeCasesAxesVars),c('scalar', 'integer'))
completeCases <- completeCasesTable(dt)
expect_equal(class(unlist(completeCases$variableDetails)), 'character')
expect_equal(class(unlist(completeCases$completeCases)), 'integer')
sampleSizes <- sampleSizeTable(dt)
expect_equal(class(unlist(sampleSizes$entity.cat4)), 'character')
expect_equal(class(unlist(sampleSizes$size)), 'integer')
})
test_that("scattergl.dt() returns an appropriately sized data.table", {
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'dateA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'DATE'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
df <- as.data.frame(testDF)
idColumn <- "entity.sampleId"
df[idColumn] <- paste0('sample', 1:nrow(testDF))
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),12)
expect_equal(names(dt),c('entity.cat3', 'entity.cat4', 'seriesX', 'seriesY'))
expect_equal(as.character(range(df$entity.dateA)), range(dt$seriesX))
dt <- scattergl.dt(df, variables, 'smoothedMean')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),12)
expect_equal(names(dt),c('entity.cat3', 'entity.cat4', 'smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'smoothedMeanWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),12)
expect_equal(names(dt),c('entity.cat4', 'entity.cat3', 'seriesX', 'seriesY', 'smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'bestFitLineWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),12)
expect_equal(names(dt),c('entity.cat4', 'entity.cat3', 'seriesX', 'seriesY', 'bestFitLineX', 'bestFitLineY', 'r2'))
# should see some new cols if we have a correlationMethod
# dt <- scattergl.dt(df, variables, 'bestFitLineWithRaw', correlationMethod = 'pearson')
# expect_is(dt, 'data.table')
# expect_equal(nrow(dt),12)
# expect_equal(names(dt),c('entity.cat4', 'entity.cat3', 'seriesX', 'seriesY', 'bestFitLineX', 'bestFitLineY', 'r2', 'correlationCoef', 'pValue'))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),12)
expect_equal(names(dt),c('entity.cat3', 'entity.cat4', 'seriesX', 'seriesY'))
numericSeriesX <- lapply(dt$seriesX, as.numeric)
expect_equal(range(df$entity.contA), range(numericSeriesX))
dt <- scattergl.dt(df, variables, 'smoothedMean')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),12)
expect_equal(names(dt),c('entity.cat3', 'entity.cat4', 'smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'smoothedMeanWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),12)
expect_equal(names(dt),c('entity.cat4', 'entity.cat3', 'seriesX', 'seriesY', 'smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'bestFitLineWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),12)
expect_equal(names(dt),c('entity.cat4', 'entity.cat3', 'seriesX', 'seriesY', 'bestFitLineX', 'bestFitLineY', 'r2'))
dt <- scattergl.dt(df, variables, 'density')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),12)
expect_equal(names(dt),c('entity.cat3', 'entity.cat4', 'densityX', 'densityY'))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),3)
expect_equal(names(dt),c('entity.cat3', 'seriesX', 'seriesY'))
dt <- scattergl.dt(df, variables, 'smoothedMeanWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),3)
expect_equal(names(dt),c('entity.cat3', 'seriesX', 'seriesY', 'smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'smoothedMean')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),3)
expect_equal(names(dt),c('entity.cat3', 'smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'bestFitLineWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),3)
expect_equal(names(dt),c('entity.cat3', 'seriesX', 'seriesY', 'bestFitLineX', 'bestFitLineY', 'r2'))
dt <- scattergl.dt(df, variables, 'density')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),3)
expect_equal(names(dt),c('entity.cat3', 'densityX', 'densityY'))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),4)
expect_equal(names(dt),c('entity.cat4', 'seriesX', 'seriesY'))
dt <- scattergl.dt(df, variables, 'smoothedMeanWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),4)
expect_equal(names(dt),c('entity.cat4', 'seriesX', 'seriesY', 'smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'smoothedMean')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),4)
expect_equal(names(dt),c('entity.cat4', 'smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'bestFitLineWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),4)
expect_equal(names(dt),c('entity.cat4', 'seriesX', 'seriesY', 'bestFitLineX', 'bestFitLineY', 'r2'))
dt <- scattergl.dt(df, variables, 'density')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),4)
expect_equal(names(dt),c('entity.cat4', 'densityX', 'densityY'))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),1)
expect_equal(names(dt),c('seriesX', 'seriesY'))
dt <- scattergl.dt(df, variables, 'smoothedMeanWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),1)
expect_equal(names(dt),c('seriesX', 'seriesY', 'smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'smoothedMean')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),1)
expect_equal(names(dt),c('smoothedMeanX', 'smoothedMeanY', 'smoothedMeanSE', 'smoothedMeanError'))
dt <- scattergl.dt(df, variables, 'bestFitLineWithRaw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),1)
expect_equal(names(dt),c('seriesX', 'seriesY', 'bestFitLineX', 'bestFitLineY', 'r2'))
dt <- scattergl.dt(df, variables, 'density')
expect_is(dt, 'data.table')
expect_equal(nrow(dt),1)
expect_equal(names(dt),c('densityX', 'densityY'))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contC', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_equal(nrow(dt), 1)
expect_equal(names(dt), c('seriesX', 'seriesY', 'seriesGradientColorscale'))
expect_true(identical(dt$seriesGradientColorscale[[1]], as.character(df$entity.contC)))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet2'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contC', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_equal(nrow(dt), 12)
expect_equal(names(dt), c('panel', 'seriesX', 'seriesY', 'seriesGradientColorscale'))
expect_equal(length(dt$seriesGradientColorscale[[1]]), length(dt$seriesX[[1]]))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contC', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_equal(nrow(dt), 4)
expect_equal(names(dt), c('entity.cat4', 'seriesX', 'seriesY', 'seriesGradientColorscale'))
expect_equal(length(dt$seriesGradientColorscale[[1]]), length(dt$seriesX[[1]]))
## Collection vars
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'collection', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
isCollection = TRUE,
members = new("VariableSpecList", SimpleList(
new("VariableSpec", variableId = 'contB', entityId = 'entity'),
new("VariableSpec", variableId = 'contA', entityId = 'entity'),
new("VariableSpec", variableId = 'contC', entityId = 'entity'))
)),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contD', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt), 9)
expect_equal(names(dt), c('entity.cat3', 'entity.collection', 'seriesX', 'seriesY'))
expect_equal(unique(dt$entity.collection), c('contA','contB','contC'))
expect_equal(veupathUtils::findVariableSpecFromPlotRef(attr(dt, 'variables'), 'facet1')@variableId, 'collection')
expect_equal(veupathUtils::findVariableSpecFromPlotRef(attr(dt, 'variables'), 'yAxis')@variableId, 'collectionVarValues')
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'collection', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet2'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
isCollection = TRUE,
members = new("VariableSpecList", SimpleList(
new("VariableSpec", variableId = 'contB', entityId = 'entity'),
new("VariableSpec", variableId = 'contA', entityId = 'entity'),
new("VariableSpec", variableId = 'contC', entityId = 'entity'))
)),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contD', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt), 9)
expect_equal(names(dt), c('panel', 'seriesX', 'seriesY'))
expect_equal(dt$panel[1], 'cat3_a.||.contA')
expect_equal(veupathUtils::findVariableSpecFromPlotRef(attr(dt, 'variables'), 'facet2')@variableId, 'collection')
expect_equal(veupathUtils::findVariableSpecFromPlotRef(attr(dt, 'variables'), 'yAxis')@variableId, 'collectionVarValues')
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'computed'),
variableSpec = new("VariableSpec", variableId = 'collection', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
displayName = "Peilou's Evenness",
displayRangeMin = 0,
displayRangeMax = 1,
isCollection = TRUE,
members = new("VariableSpecList", SimpleList(
new("VariableSpec", variableId = 'contB', entityId = 'entity'),
new("VariableSpec", variableId = 'contA', entityId = 'entity'),
new("VariableSpec", variableId = 'contC', entityId = 'entity'))
)),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contD', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt), 9)
expect_equal(names(dt), c('entity.collection', 'entity.cat3', 'seriesX', 'seriesY'))
expect_equal(unique(dt$entity.collection), c('contA','contB','contC'))
expect_equal(veupathUtils::findVariableSpecFromPlotRef(attr(dt, 'variables'), 'overlay')@variableId, 'collection')
expect_equal(veupathUtils::findVariableSpecFromPlotRef(attr(dt, 'variables'), 'yAxis')@variableId, 'collectionVarValues')
collectionVM <- veupathUtils::findVariableMetadataFromPlotRef(attr(dt, 'variables'), 'yAxis')
expect_equal(collectionVM@displayRangeMin, 0)
expect_equal(collectionVM@displayRangeMax, 1)
expect_equal(collectionVM@displayName, "Peilou's Evenness values")
collectionVM <- veupathUtils::findVariableMetadataFromPlotRef(attr(dt, 'variables'), 'overlay')
expect_equal(collectionVM@displayName, "Peilou's Evenness")
# Only one var in the collectionVar
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'collection', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
isCollection = TRUE,
members = new("VariableSpecList", SimpleList(
new("VariableSpec", variableId = 'contB', entityId = 'entity'))
)),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_is(dt, 'data.table')
expect_equal(nrow(dt), 3)
expect_equal(names(dt), c('entity.collection', 'entity.cat3', 'seriesX', 'seriesY'))
expect_equal(unique(dt$entity.collection), c('contB'))
expect_equal(veupathUtils::findVariableSpecFromPlotRef(attr(dt, 'variables'), 'overlay')@variableId, 'collection')
expect_equal(veupathUtils::findVariableSpecFromPlotRef(attr(dt, 'variables'), 'yAxis')@variableId, 'collectionVarValues')
# With factors
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'factor3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_equal(nrow(dt), 9)
expect_equal(names(dt), c('entity.cat3', 'entity.factor3','seriesX','seriesY'))
expect_equal(class(dt$entity.factor3), 'character')
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'factor6', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet2'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'factor3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_equal(nrow(dt), 18)
expect_equal(names(dt), c('panel','seriesX','seriesY'))
expect_equal(class(dt$panel), 'character')
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet2'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'factor3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
expect_equal(nrow(dt), 9)
expect_equal(names(dt), c('panel','seriesX','seriesY'))
expect_equal(class(dt$panel), 'character')
# With ids
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
df <- as.data.frame(testDF)
idColumn <- "entity.sampleId"
df[idColumn] <- paste0('sample', 1:nrow(testDF))
dt <- scattergl.dt(df, variables, 'raw', idColumn = idColumn, returnPointIds = TRUE)
expect_equal(nrow(dt), 3)
expect_equal(names(dt), c('entity.cat3','seriesX','seriesY', 'pointIds'))
expect_equal(class(dt[['pointIds']][[1]]), 'character')
# With id columns and facets and best fit lines
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'factor3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'bestFitLineWithRaw', idColumn = idColumn, returnPointIds = TRUE)
expect_equal(nrow(dt), 9)
expect_equal(names(dt), c('entity.factor3', 'entity.cat3', 'seriesX','seriesY', 'pointIds', 'bestFitLineX', 'bestFitLineY', 'r2'))
expect_equal(class(dt[['pointIds']][[1]]), 'character')
dt <- scattergl.dt(df, variables, 'bestFitLineWithRaw', idColumn = idColumn, returnPointIds = FALSE)
expect_equal(nrow(dt), 9)
expect_equal(names(dt), c('entity.factor3', 'entity.cat3', 'seriesX','seriesY', 'bestFitLineX', 'bestFitLineY', 'r2'))
expect_equal(class(dt[[idColumn]][[1]]), 'NULL')
## Should err if the id column is provided but doesn't exist
expect_error(scattergl.dt(df, variables, 'bestFitLineWithRaw', idColumn = 'fake', returnPointIds = TRUE))
expect_error(scattergl.dt(df, variables, 'bestFitLineWithRaw', returnPointIds = TRUE))
})
test_that("scattergl() returns appropriately formatted json", {
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
df <- as.data.frame(testDF)
idColumn <- "entity.sampleId"
df[idColumn] <- paste0('sample', 1:nrow(testDF))
dt <- scattergl.dt(df, variables, 'smoothedMeanWithRaw')
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(names(jsonList),c('scatterplot','sampleSizeTable', 'completeCasesTable'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('facetVariableDetails','overlayVariableDetails','seriesX','seriesY','smoothedMeanX','smoothedMeanY','smoothedMeanSE','smoothedMeanError'))
expect_equal(names(jsonList$scatterplot$data$facetVariableDetails[[1]]),c('variableId','entityId','value'))
expect_equal(length(jsonList$scatterplot$data$facetVariableDetails), 12)
expect_equal(jsonList$scatterplot$data$facetVariableDetails[[1]]$variableId, 'cat4')
expect_equal(names(jsonList$scatterplot$config),c('variables','completeCasesAllVars','completeCasesAxesVars'))
expect_equal(names(jsonList$scatterplot$config$variables),c("variableClass","variableSpec","plotReference","dataType","dataShape","isCollection","imputeZero","hasStudyDependentVocabulary"))
expect_equal(jsonList$scatterplot$config$variables$variableSpec$variableId, c("contB","contA","cat3","cat4"))
expect_equal(names(jsonList$sampleSizeTable),c('overlayVariableDetails','facetVariableDetails','size'))
expect_equal(class(jsonList$sampleSizeTable$facetVariableDetails[[1]]$value), 'character')
expect_equal(class(jsonList$sampleSizeTable$overlayVariableDetails$value), 'character')
expect_equal(names(jsonList$completeCasesTable),c('variableDetails','completeCases'))
expect_equal(names(jsonList$completeCasesTable$variableDetails), c('variableId','entityId'))
expect_equal(jsonList$completeCasesTable$variableDetails$variableId, c('contA', 'contB', 'cat3', 'cat4'))
# check json for correlations when correlationMethod is not none
# dt <- scattergl.dt(df, variables, 'smoothedMeanWithRaw', correlationMethod = 'pearson')
# outJson <- getJSON(dt, FALSE)
# jsonList <- jsonlite::fromJSON(outJson)
# expect_equal(names(jsonList$scatterplot$data),c('facetVariableDetails','overlayVariableDetails','seriesX','seriesY','smoothedMeanX','smoothedMeanY','smoothedMeanSE','smoothedMeanError','correlationCoef','pValue'))
# expect_equal(names(jsonList$scatterplot$config), c('variables','completeCasesAllVars','completeCasesAxesVars','correlationMethod'))
# expect_equal(jsonList$scatterplot$config$correlationMethod, 'pearson')
# expect_equal(class(jsonList$scatterplot$data$correlationCoef), 'numeric')
# expect_equal(class(jsonList$scatterplot$data$pValue), 'numeric')
# Continuous overlay with > 8 values
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contC', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'raw')
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(names(jsonList),c('scatterplot','sampleSizeTable', 'completeCasesTable'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('facetVariableDetails','seriesX','seriesY','seriesGradientColorscale'))
expect_equal(names(jsonList$scatterplot$data$facetVariableDetails[[1]]),c('variableId','entityId','value'))
expect_equal(length(jsonList$scatterplot$data$facetVariableDetails), 4)
expect_equal(jsonList$scatterplot$data$facetVariableDetails[[1]]$variableId, 'cat4')
expect_equal(names(jsonList$scatterplot$config),c('variables','completeCasesAllVars','completeCasesAxesVars'))
expect_equal(names(jsonList$scatterplot$config$variables$variableSpec),c('variableId','entityId'))
expect_equal(jsonList$scatterplot$config$variables$variableSpec$variableId[jsonList$scatterplot$config$variables$plotReference == 'overlay'], 'contC')
expect_equal(names(jsonList$sampleSizeTable),c('facetVariableDetails','size'))
expect_equal(class(jsonList$sampleSizeTable$facetVariableDetails[[1]]$value), 'character')
expect_equal(jsonList$sampleSizeTable$facetVariableDetails[[1]]$variableId, 'cat4')
expect_equal(names(jsonList$completeCasesTable),c('variableDetails','completeCases'))
expect_equal(names(jsonList$completeCasesTable$variableDetails), c('variableId','entityId'))
expect_equal(jsonList$completeCasesTable$variableDetails$variableId, c('contA','contB','contC','cat4'))
# Continuous overlay with < 9 values
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'int6', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
dt <- scattergl.dt(df, variables, 'smoothedMeanWithRaw')
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(names(jsonList),c('scatterplot','sampleSizeTable', 'completeCasesTable'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('facetVariableDetails','overlayVariableDetails','seriesX','seriesY','smoothedMeanX','smoothedMeanY','smoothedMeanSE','smoothedMeanError'))
expect_equal(names(jsonList$scatterplot$data$facetVariableDetails[[1]]),c('variableId','entityId','value'))
expect_equal(length(jsonList$scatterplot$data$facetVariableDetails), 24)
expect_equal(jsonList$scatterplot$data$facetVariableDetails[[1]]$variableId, 'cat4')
expect_equal(names(jsonList$scatterplot$config),c('variables','completeCasesAllVars','completeCasesAxesVars'))
expect_equal(names(jsonList$scatterplot$config$variables),c("variableClass","variableSpec","plotReference","dataType","dataShape","isCollection","imputeZero","hasStudyDependentVocabulary"))
expect_equal(jsonList$scatterplot$config$variables$variableSpec$variableId, c("contB","contA","int6","cat4"))
expect_equal(names(jsonList$sampleSizeTable),c('overlayVariableDetails','facetVariableDetails','size'))
expect_equal(class(jsonList$sampleSizeTable$facetVariableDetails[[1]]$value), 'character')
expect_equal(class(jsonList$sampleSizeTable$overlayVariableDetails$value), 'character')
expect_equal(jsonList$sampleSizeTable$overlayVariableDetails$variableId[1], 'int6')
expect_equal(names(jsonList$completeCasesTable),c('variableDetails','completeCases'))
expect_equal(names(jsonList$completeCasesTable$variableDetails), c('variableId','entityId'))
expect_equal(jsonList$completeCasesTable$variableDetails$variableId, c('contA','contB','int6','cat4'))
# With collection vars and computed variable metadata
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contD', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'computed'),
variableSpec = new("VariableSpec", variableId = 'collection', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
displayName = "Label",
displayRangeMin = 0,
displayRangeMax = 1,
isCollection = TRUE,
members = new("VariableSpecList", SimpleList(
new("VariableSpec", variableId = "contB", entityId = "entity"),
new("VariableSpec", variableId = "contA", entityId = "entity"),
new("VariableSpec", variableId = "contC", entityId = "entity")
))
)
))
dt <- scattergl.dt(df, variables, 'raw')
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(names(jsonList),c('scatterplot','sampleSizeTable', 'completeCasesTable'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('overlayVariableDetails','facetVariableDetails','seriesX','seriesY'))
expect_equal(names(jsonList$scatterplot$data$overlayVariableDetails),c('variableId','entityId','value'))
expect_equal(names(jsonList$scatterplot$config),c('variables','completeCasesAllVars','completeCasesAxesVars'))
expect_equal(jsonList$scatterplot$config$completeCasesAllVars, nrow(df))
expect_equal(jsonList$scatterplot$config$completeCasesAxesVars, nrow(df))
expect_equal(names(jsonList$sampleSizeTable),c('overlayVariableDetails', 'facetVariableDetails','size'))
expect_equal(class(jsonList$sampleSizeTable$facetVariableDetails[[1]]$value), 'character')
expect_equal(class(jsonList$sampleSizeTable$overlayVariableDetails$value), 'character')
expect_equal(names(jsonList$completeCasesTable),c('variableDetails','completeCases'))
expect_equal(names(jsonList$completeCasesTable$variableDetails), c('variableId','entityId'))
expect_equal(length(jsonList$completeCasesTable$variableDetails$variableId), 5)
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contD', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'computed'),
variableSpec = new("VariableSpec", variableId = 'collection', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet2'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
displayName = "Label",
displayRangeMin = 0.5,
displayRangeMax = 1.5,
isCollection = TRUE,
members = new("VariableSpecList", SimpleList(
new("VariableSpec", variableId = "contB", entityId = "entity"),
new("VariableSpec", variableId = "contA", entityId = "entity"),
new("VariableSpec", variableId = "contC", entityId = "entity")
))
)
))
dt <- scattergl.dt(df, variables, 'raw')
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(names(jsonList),c('scatterplot','sampleSizeTable', 'completeCasesTable'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('facetVariableDetails','seriesX','seriesY'))
expect_equal(names(jsonList$scatterplot$data$facetVariableDetails[[1]]),c('variableId','entityId','value','displayLabel'))
expect_equal(names(jsonList$scatterplot$config),c('variables','completeCasesAllVars','completeCasesAxesVars'))
expect_equal(jsonList$scatterplot$config$completeCasesAllVars, nrow(df))
expect_equal(jsonList$scatterplot$config$completeCasesAxesVars, nrow(df))
expect_equal(names(jsonList$sampleSizeTable),c('facetVariableDetails','size'))
expect_equal(class(jsonList$sampleSizeTable$facetVariableDetails[[1]]$value), 'character')
expect_equal(names(jsonList$completeCasesTable),c('variableDetails','completeCases'))
expect_equal(names(jsonList$completeCasesTable$variableDetails), c('variableId','entityId'))
expect_equal(length(jsonList$completeCasesTable$variableDetails$variableId), 5)
# Ensure sampleSizeTable and completeCasesTable are not part of json if we do not ask for them.
dt <- scattergl.dt(df, variables, 'raw', sampleSizes = FALSE, completeCases = FALSE)
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(names(jsonList),c('scatterplot'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('facetVariableDetails','seriesX','seriesY'))
expect_equal(names(jsonList$scatterplot$data$facetVariableDetails[[1]]),c('variableId','entityId','value','displayLabel'))
expect_equal(names(jsonList$scatterplot$config),c('variables'))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contD', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'computed'),
variableSpec = new("VariableSpec", variableId = 'collection', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
displayName = "Label",
displayRangeMin = 0,
displayRangeMax = 1,
isCollection = TRUE,
members = new("VariableSpecList", SimpleList(
new("VariableSpec", variableId = "contB", entityId = "entity"),
new("VariableSpec", variableId = "contA", entityId = "entity"),
new("VariableSpec", variableId = "contC", entityId = "entity")
))
)
))
dt <- scattergl.dt(df, variables, 'raw', collectionVariablePlotRef = 'overlayVariable', computedVariableMetadata = computedVariableMetadata)
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(names(jsonList),c('scatterplot','sampleSizeTable', 'completeCasesTable'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('overlayVariableDetails','facetVariableDetails','seriesX','seriesY'))
expect_equal(names(jsonList$scatterplot$data$overlayVariableDetails),c('variableId','entityId','value','displayLabel'))
expect_equal(names(jsonList$scatterplot$config),c('variables','completeCasesAllVars','completeCasesAxesVars'))
expect_equal(jsonList$scatterplot$config$completeCasesAllVars, nrow(df))
expect_equal(jsonList$scatterplot$config$completeCasesAxesVars, nrow(df))
expect_equal(names(jsonList$sampleSizeTable),c('overlayVariableDetails', 'facetVariableDetails','size'))
expect_equal(class(jsonList$sampleSizeTable$facetVariableDetails[[1]]$value), 'character')
expect_equal(class(jsonList$sampleSizeTable$overlayVariableDetails$value), 'character')
expect_equal(names(jsonList$completeCasesTable),c('variableDetails','completeCases'))
expect_equal(names(jsonList$completeCasesTable$variableDetails), c('variableId','entityId'))
expect_equal(length(jsonList$completeCasesTable$variableDetails$variableId), 5)
# When we have only one data point and the plot has only one group, ensure seriesX and seriesY
# will be arrays
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contC', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
df <- as.data.frame(testDF)
df <- df[1, ]
dt <- scattergl.dt(df, variables, 'raw')
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(typeof(jsonList$scatterplot$data$seriesX), 'list')
expect_equal(typeof(jsonList$scatterplot$data$seriesY), 'list')
## With ids
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contC', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
df <- as.data.frame(testDF)
idColumn <- "entity.sampleId"
df[idColumn] <- paste0('sample', 1:nrow(testDF))
dt <- scattergl.dt(df, variables, 'raw', idColumn = idColumn, returnPointIds = TRUE)
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(names(jsonList),c('scatterplot','sampleSizeTable', 'completeCasesTable'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('seriesX','seriesY','seriesGradientColorscale', 'pointIds'))
expect_equal(names(jsonList$scatterplot$config),c('variables','completeCasesAllVars','completeCasesAxesVars'))
expect_equal(names(jsonList$scatterplot$config$variables$variableSpec),c('variableId','entityId'))
expect_equal(jsonList$scatterplot$config$variables$variableSpec$variableId[jsonList$scatterplot$config$variables$plotReference == 'overlay'], 'contC')
expect_equal(names(jsonList$completeCasesTable),c('variableDetails','completeCases'))
expect_equal(names(jsonList$completeCasesTable$variableDetails), c('variableId','entityId'))
expect_equal(jsonList$completeCasesTable$variableDetails$variableId, c('contA','contB','contC'))
dt <- scattergl.dt(df, variables, 'raw', idColumn = idColumn, returnPointIds = FALSE)
outJson <- getJSON(dt, FALSE)
jsonList <- jsonlite::fromJSON(outJson)
expect_equal(names(jsonList),c('scatterplot','sampleSizeTable', 'completeCasesTable'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('seriesX','seriesY','seriesGradientColorscale'))
expect_equal(names(jsonList$scatterplot$config),c('variables','completeCasesAllVars','completeCasesAxesVars'))
expect_equal(names(jsonList$scatterplot$config$variables$variableSpec),c('variableId','entityId'))
expect_equal(jsonList$scatterplot$config$variables$variableSpec$variableId[jsonList$scatterplot$config$variables$plotReference == 'overlay'], 'contC')
expect_equal(names(jsonList$completeCasesTable),c('variableDetails','completeCases'))
expect_equal(names(jsonList$completeCasesTable$variableDetails), c('variableId','entityId'))
expect_equal(jsonList$completeCasesTable$variableDetails$variableId, c('contA','contB','contC'))
})
test_that("scattergl.dt() returns correct information about missing data", {
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
)
))
# Add nMissing missing values to each column
set.seed(123)
nMissing <- 10
df <- as.data.frame(lapply(testDF, function(x) {x[sample(1:length(x), nMissing, replace=F)] <- NA; x}))
dt <- scattergl.dt(df, variables, 'raw')
completecasestable <- completeCasesTable(dt)
# Each entry should equal NROW(df) - nMissing
expect_equal(all(completecasestable$completeCases == nrow(df)-nMissing), TRUE)
# number of completeCases should be <= complete cases for each var
expect_equal(all(attr(dt, 'completeCasesAllVars')[1] <= completecasestable$completeCases), TRUE)
expect_equal(attr(dt, 'completeCasesAxesVars')[1] >= attr(dt, 'completeCasesAllVars')[1], TRUE)
dt <- scattergl.dt(df, variables, value = 'raw', evilMode = 'strataVariables')
expect_equal(attr(dt, 'completeCasesAxesVars')[1], sum(!is.na(df$entity.contA) & !is.na(df$entity.contB)))
expect_equal(attr(dt, 'completeCasesAxesVars')[1], length(unlist(dt$seriesX)))
#dt <- scattergl.dt(df, variables, value = 'raw', evilMode = 'allVariables')
#expect_equal(attr(dt, 'completeCasesAllVars')[1], sum(complete.cases(df[, map$id, with=FALSE])))
## Using naToZero to change some NAs to 0
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
imputeZero = TRUE
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat3', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = "STRING"),
dataShape = new("DataShape", value = "CATEGORICAL")
)
))
dt <- scattergl.dt(df, variables, 'raw')
completecasestable <- completeCasesTable(dt)
# Each entry except 'contA' should equal NROW(df) - nMissing
expect_equal(sum(completecasestable$completeCases == nrow(df)-nMissing), 3)
expect_equal(completecasestable[variableDetails=='entity.contA', completeCases], nrow(df))
# number of completeCases should be < complete cases for each var
expect_true(all(attr(dt, 'completeCasesAllVars')[1] < completecasestable$completeCases))
expect_true(attr(dt, 'completeCasesAxesVars')[1] > attr(dt, 'completeCasesAllVars')[1])
dt <- scattergl.dt(df, variables, value = 'raw', evilMode='strataVariables')
expect_equal(attr(dt, 'completeCasesAxesVars')[1], sum(!is.na(df$entity.contB)))
expect_equal(attr(dt, 'completeCasesAxesVars')[1], length(unlist(dt$seriesX)))
# SeriesGradientColorscale with no data
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contC', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
dt <- scattergl.dt(df, variables, 'raw', evilMode = 'strataVariables')
expect_equal(nrow(dt), 2)
expect_equal(names(dt), c('seriesX', 'seriesY', 'seriesGradientColorscale'))
expect_equal(lapply(dt$seriesGradientColorscale, length), lapply(dt$seriesX, length))
expect_true(all(is.na(dt$seriesGradientColorscale[[2]])))
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contB', entityId = 'entity'),
plotReference = new("PlotReference", value = 'yAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'cat4', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'STRING'),
dataShape = new("DataShape", value = 'CATEGORICAL')
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'contC', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
dt <- scattergl.dt(df, variables, 'raw', evilMode = 'strataVariables')
expect_equal(names(dt), c('entity.cat4', 'seriesX', 'seriesY', 'seriesGradientColorscale'))
expect_equal(lapply(dt$seriesGradientColorscale, length), lapply(dt$seriesX, length))
expect_true(all(is.na(dt$seriesGradientColorscale[[2]])))
# Testing json output with continuous overlay and no data
outJson <- getJSON(dt, TRUE)
jsonList <- jsonlite::fromJSON(outJson) # Turns all nulls in arrays to NA!!
expect_equal(names(jsonList),c('scatterplot','sampleSizeTable', 'completeCasesTable'))
expect_equal(names(jsonList$scatterplot),c('data','config'))
expect_equal(names(jsonList$scatterplot$data),c('facetVariableDetails','seriesX','seriesY','seriesGradientColorscale'))
expect_equal(names(jsonList$scatterplot$data$facetVariableDetails[[1]]),c('variableId','entityId','value'))
expect_equal(length(jsonList$scatterplot$data$facetVariableDetails), 10)
expect_equal(jsonList$scatterplot$data$facetVariableDetails[[1]]$variableId, 'cat4')
expect_true(all(is.na(jsonList$scatterplot$data$seriesGradientColorscale[[2]]))) # should be null in the json file, but fromJSON converts to NA
expect_equal(names(jsonList$scatterplot$config),c('variables','completeCasesAllVars','completeCasesAxesVars'))
expect_equal(names(jsonList$scatterplot$config$variables$variableSpec),c('variableId','entityId'))
expect_equal(jsonList$scatterplot$config$variables$variableSpec$variableId[jsonList$scatterplot$config$variables$plotReference == 'overlay'], 'contC')
expect_equal(names(jsonList$sampleSizeTable),c('facetVariableDetails','size'))
expect_equal(class(jsonList$sampleSizeTable$facetVariableDetails[[1]]$value), 'character')
expect_equal(jsonList$sampleSizeTable$facetVariableDetails[[1]]$variableId, 'cat4')
expect_equal(names(jsonList$completeCasesTable),c('variableDetails','completeCases'))
expect_equal(names(jsonList$completeCasesTable$variableDetails), c('variableId','entityId'))
expect_equal(jsonList$completeCasesTable$variableDetails$variableId, c('contA','contB','contC','cat4'))
## Collection vars
# Add nMissing missing values to each column
df <- as.data.frame(lapply(testDF, function(x) {x[sample(1:length(x), nMissing, replace=F)] <- NA; x}))
# Multiple vars to overlay
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'collection', entityId = 'entity'),
plotReference = new("PlotReference", value = 'overlay'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
isCollection = TRUE,
members = new("VariableSpecList", SimpleList(
new("VariableSpec", variableId = "contB", entityId = "entity"),
new("VariableSpec", variableId = "contC", entityId = "entity"),
new("VariableSpec", variableId = "contD", entityId = "entity")
))
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'repeatedContA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
dt <- scattergl.dt(df, variables, 'raw', collectionVariablePlotRef = 'overlayVariable')
completecasestable <- completeCasesTable(dt)
# Each entry should equal NROW(df) - 10
expect_equal(all(completecasestable$completeCases == nrow(df)-10), TRUE)
# number of completeCases should be <= complete cases for each var
expect_equal(all(attr(dt, 'completeCasesAllVars')[1] <= completecasestable$completeCases), TRUE)
expect_true(attr(dt, 'completeCasesAllVars')[1] == nrow(df) - nMissing)
expect_equal(attr(dt, 'completeCasesAxesVars')[1] >= attr(dt, 'completeCasesAllVars')[1], TRUE)
expect_true(attr(dt, 'completeCasesAxesVars')[1] == nrow(df) - nMissing)
# Multiple vars to facet1
variables <- new("VariableMetadataList", SimpleList(
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'collection', entityId = 'entity'),
plotReference = new("PlotReference", value = 'facet1'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS'),
isCollection = TRUE,
members = new("VariableSpecList", SimpleList(
new("VariableSpec", variableId = "contB", entityId = "entity"),
new("VariableSpec", variableId = "contC", entityId = "entity"),
new("VariableSpec", variableId = "contD", entityId = "entity")
))
),
new("VariableMetadata",
variableClass = new("VariableClass", value = 'native'),
variableSpec = new("VariableSpec", variableId = 'repeatedContA', entityId = 'entity'),
plotReference = new("PlotReference", value = 'xAxis'),
dataType = new("DataType", value = 'NUMBER'),
dataShape = new("DataShape", value = 'CONTINUOUS')
)
))
dt <- scattergl.dt(df, variables, 'raw', collectionVariablePlotRef = 'facetVariable1')
completecasestable <- completeCasesTable(dt)
# Each entry should equal NROW(df) - 10
expect_equal(all(completecasestable$completeCases == nrow(df)-10), TRUE)
# number of completeCases should be <= complete cases for each var
expect_equal(all(attr(dt, 'completeCasesAllVars')[1] <= completecasestable$completeCases), TRUE)
expect_true(attr(dt, 'completeCasesAllVars')[1] == nrow(df) - nMissing)
expect_equal(attr(dt, 'completeCasesAxesVars')[1] >= attr(dt, 'completeCasesAllVars')[1], TRUE)
expect_true(attr(dt, 'completeCasesAxesVars')[1] == nrow(df) - nMissing)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.