R/plotTDEHm.R

Defines functions plotTDEHm

#' Plot the fitting heatmaps for TDE test.
#'
#' This function is used for plotting the fitting heatmaps.
#'
#' @import ggplot2 RColorBrewer gridExtra viridis pheatmap
#' @return a plot
#' @author Wenpin Hou <whou10@jhu.edu>
#' @export
#' @param testobj output object from lamian_test(). It is a list.
#' @param showRowName logical. If FALSE (default), row names (i.e. gene names) of the heatmaps will not be shown in the plot.
#' @param cellWidthTotal a numeric number. Total width of each heatmap cell.
#' @param cellHeightTotal when showRowName = TRUE, cellHeightTotal is suggested to be ten times the number of genes (rows).
#' @param showCluster (no implemented yet). if TRUE, "cluster" should be a slot in testobj, and it will be label in the heatmap. If FALSE, no need to pass in "cluster".
#' @param colann a data frame. Each column represent the annotation feature for the cells. row names should be the same as the name of the cells in the data.
#' @param rowann a data frame. Each column represent the annotation feature for the genes. row names should be the same as the name of the genes in the data.
#' @param annotation_colors a list. Will be passed onto the annotation_colors input in pheatmap().
#' @param type One of c('Time', 'Variable')
#' @param subsampleCell logical. If TRUE, will subsample cells.
#' @param numSubsampleCell a numeric number indicating the number of cells users want to subsampled. Only useful when subsampleCell == TRUE.
#' @examples
#' data(mantestobj)
#' plotTDEHm(testobj = mantestobj, type = 'variable', numSubsampleCell = 5)

plotTDEHm <-
  function(testobj,
           showRowName = FALSE,
           cellWidthTotal = 250,
           cellHeightTotal = 400,
           showCluster = FALSE,
           colann = NULL,
           rowann = NULL,
           annotation_colors = NULL,
           type = 'time',
           subsampleCell = TRUE,
           numSubsampleCell = 1e3) {
    fit <- testobj$populationFit
    if (subsampleCell) {
      if (toupper(type)  == 'TIME') {
        id <- round(seq(1, ncol(fit), length.out = numSubsampleCell))
        fit <- fit[, id]
      } else if (toupper(type) == 'VARIABLE') {
        id <- round(seq(1, ncol(fit[[1]]), length.out = numSubsampleCell))
        for (i in seq_len(length(fit))) {
          fit[[i]] <- fit[[i]][, id]
        }
      }
      testobj$pseudotime <-
        sort(sample(testobj$pseudotime, numSubsampleCell))
      rownames(testobj$cellanno) <- testobj$cellanno[, 1]
      testobj$cellanno <-
        testobj$cellanno[names(testobj$pseudotime),]
      print('subsample done!')
    }
    if ('expr.ori' %in% names(testobj)) {
      expr <- testobj$expr.ori[, names(testobj$pseudotime)]
    } else {
      expr <- testobj$expr[, names(testobj$pseudotime)]
    }
    
    fit.bak = fit
    clu <- testobj$cluster
    if (toupper(type) == 'VARIABLE') {
      if ('XDEType' %in% names(testobj))
        XDEType <- testobj$XDEType
      else
        XDEType <- getXDEType(testobj)
      fit.scale <- do.call(cbind, fit)
      fit.scale <- fit.scale[names(testobj$cluster),]
      fit.scale <- scalematrix(fit.scale)
      colnames(fit.scale) <-
        paste0(rep(names(fit), each = ncol(fit.scale) / length(fit)), ';cell', seq(1, ncol(fit.scale)))
      res <- data.frame(
        clu = clu,
        cor = sapply(names(clu), function(i)
          cor(fit.scale[i, seq(1, ncol(fit.scale) / 2)], seq(
            1, ncol(fit.scale) / 2
          ))),
        # changepoint = sapply(names(clu), function(i) which.min(abs(fit.scale[i, seq(1, ncol(fit.scale)/2)]))),
        changepoint = sapply(names(clu), function(i) {
          v <- fit.scale[i, seq(1, ncol(fit.scale) / 2)]
          which(v[-length(v)] * v[-1] < 0)[1]
        }),
        XDEType = XDEType[names(clu)]
      )
      res <-
        res[order(res$clu, res$XDEType, res$changepoint, res$cor),]
    } else {
      fit.scale <- scalematrix(fit)
      dimnames(fit.scale) <- dimnames(fit)
      res <- data.frame(
        clu = clu,
        cor = sapply(names(clu), function(i)
          cor(fit.scale[i, seq(1, ncol(fit.scale) / 2)], seq(
            1, ncol(fit.scale) / 2
          ))),
        changepoint = sapply(names(clu), function(i) {
          v <-
            fit.scale[i, seq(round(ncol(fit.scale) * 0.1), round(ncol(fit.scale) *
                                                                   0.9))]
          which(v[-length(v)] * v[-1] < 0)[1]
        })
      )
      # changepoint = sapply(names(clu), function(i) which.min(abs(fit.scale[i, seq(round(ncol(fit.scale)*0.01), round(ncol(fit.scale)*0.99))]))))
      
      res <- res[order(res$clu, res$changepoint, res$cor),]
    }
    
    fit.scale <- fit.scale[rownames(res),]
    # colnames(fit.scale) <- paste0(colnames(fit.scale), '_', seq(1, ncol(fit.scale)))
    ## ------------------------
    ## plot original expression
    ## ------------------------
    cellanno <- testobj$cellanno
    
    expr <- expr[, names(testobj$pseudotime)]
    
    if (toupper(type) == 'VARIABLE') {
      tmp <- lapply(names(fit), function(i) {
        expr[rownames(fit.scale), colnames(expr) %in% cellanno[cellanno[, 2] %in% rownames(testobj$design)[testobj$design[, 2] == sub('.*_', '', i)], 1]]
      })
      expr.scale <- do.call(cbind, tmp)
    } else if (toupper(type) == 'TIME') {
      expr.scale <- expr
    }
    expr.scale <- scalematrix(expr.scale)
    expr.scale <- expr.scale[rownames(fit.scale),]
    #
    ## plot ------------------------
    expr.scale[expr.scale > quantile(as.vector(expr.scale), 0.98)] <-
      quantile(as.vector(expr.scale), 0.98)
    expr.scale[expr.scale < quantile(as.vector(expr.scale), 0.02)] <-
      quantile(as.vector(expr.scale), 0.02)
    fit.scale[fit.scale > quantile(as.vector(fit.scale), 0.98)] <-
      quantile(as.vector(fit.scale), 0.98)
    fit.scale[fit.scale < quantile(as.vector(fit.scale), 0.02)] <-
      quantile(as.vector(fit.scale), 0.02)
    ### annotate rows and columns
    
    if (is.null(colann)) {
      if (toupper(type) == 'VARIABLE') {
        colann <- data.frame(
          # sample = cellanno[match(colnames(expr.scale),cellanno[, 1]), 2],
          pseudotime = testobj$pseudotime[colnames(expr.scale)],
          group = as.character(testobj$design[cellanno[match(colnames(expr.scale), cellanno[, 1]), 2], 2]),
          expression = 'Original',
          stringsAsFactors = FALSE
        )
        
        col.group = grDevices::colorRampPalette(brewer.pal(n = 9, name = "YlGnBu"))(length(unique(colann$group)))
        names(col.group) = unique(colann$group)
      } else if (toupper(type) == 'TIME') {
        colann <- data.frame(
          # sample = cellanno[match(colnames(expr.scale),cellanno[, 1]), 2],
          pseudotime = testobj$pseudotime[colnames(expr.scale)],
          expression = 'Original',
          stringsAsFactors = FALSE
        )
      }
    }
    rownames(colann) = colnames(expr.scale)
    col.expression = brewer.pal(n = 8, name = "Pastel1")[seq_len(2)]
    names(col.expression) = c('Original', 'Model Fitted')
    col.pseudotime = grDevices::colorRampPalette(brewer.pal(n = 9, name = "YlGnBu"))(length(unique(colann$pseudotime)))
    names(col.pseudotime) = unique(colann$pseudotime)
    
    if (is.null(rowann)) {
      if (toupper(type) == 'VARIABLE') {
        rowann = data.frame(
          cluster = as.character(clu),
          XDEType = as.character(XDEType[names(clu)]),
          stringsAsFactors = FALSE
        )
      } else if (toupper(type) == 'TIME') {
        rowann = data.frame(cluster = as.character(clu),
                            stringsAsFactors = FALSE)
      }
      rownames(rowann) = names(clu)
      rowann <- rowann[rownames(fit.scale), , drop = FALSE]
      if (length(unique(clu)) < 8) {
        col.clu = brewer.pal(8, 'Set1')[seq_len(length(unique(clu)))]
      } else {
        col.clu = grDevices::colorRampPalette(brewer.pal(8, 'Set1'))[seq_len(length(unique(clu)))]
      }
      names(col.clu) = unique(clu)
    }
    
    if (is.null(colann) | is.null(annotation_colors)) {
      if (toupper(type) == 'VARIABLE') {
        col.XDEType = brewer.pal(8, 'Dark2')[seq_len(length(unique(res$XDEType)))]
        names(col.XDEType) = unique(res$XDEType)
        annotation_colors = list(
          pseudotime = col.pseudotime,
          group = col.group,
          expression = col.expression,
          cluster = col.clu,
          XDEType = col.XDEType
        )
      } else if (toupper(type) == 'TIME') {
        annotation_colors = list(pseudotime = col.pseudotime,
                                 expression = col.expression,
                                 cluster = col.clu)
      }
    }
    
    #### save png
    cpl = grDevices::colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100)
    plist <- list()
    
    p1 <- pheatmap::pheatmap(
      expr.scale,
      cluster_rows = FALSE,
      cluster_cols = FALSE,
      show_rownames = showRowName,
      show_colnames = FALSE,
      color = cpl,
      annotation_col = colann,
      annotation_row = rowann,
      annotation_colors = annotation_colors,
      cellwidth = cellWidthTotal / ncol(expr.scale),
      cellheight = cellHeightTotal / nrow(expr.scale),
      border_color = NA,
      silent = TRUE
    )
    plist[[1]] <- p1[[4]]
    
    ## --------------------
    ## plot fitting values
    ## --------------------
    if (toupper(type) == 'VARIABLE') {
      colann.fit <-
        data.frame(
          pseudotime = rep(seq(1, ncol(fit.scale) / length(fit)), length(fit)),
          group = gsub(sub('_.*', '_', names(fit)[1]), '', sub(';.*', '', colnames(fit.scale))),
          expression = 'Model Fitted',
          stringsAsFactors = FALSE
        )
    } else if (toupper(type) == 'TIME') {
      colann.fit <-
        data.frame(
          pseudotime = testobj$pseudotime[colnames(fit.scale)],
          expression = 'Model Fitted',
          stringsAsFactors = FALSE
        )
      col.pseudotime = grDevices::colorRampPalette(brewer.pal(n = 9, name = "YlGnBu"))(length(unique(colann.fit$pseudotime)))
      names(col.pseudotime) = unique(colann.fit$pseudotime)
      annotation_colors$pseudotime <- col.pseudotime
    }
    rownames(colann.fit) = colnames(fit.scale)
    p2 <- pheatmap::pheatmap(
      fit.scale,
      cluster_rows = FALSE,
      cluster_cols = FALSE,
      show_rownames = showRowName,
      show_colnames = FALSE,
      color = cpl,
      annotation_col = colann.fit,
      annotation_row = rowann,
      annotation_colors = annotation_colors,
      cellwidth = cellWidthTotal / ncol(fit.scale),
      cellheight = cellHeightTotal / nrow(fit.scale),
      border_color = NA,
      silent = TRUE
    )
    plist[[3]] <- p2[[4]]
    plist[[2]] <- ggplot(data = NULL) + geom_blank() + theme_void()
    print(grid.arrange(grobs = plist, layout_matrix = matrix(c(
      1, 1, 1, 1, 2, 3, 3, 3, 3
    ), nrow = 1)))
    
  }
Winnie09/Lamian documentation built on Nov. 19, 2024, 7:04 p.m.