#' Install decompTumor2Sig from Bioconductor
InstalldecompTumor2Sig <- function(){
message("Installing decompTumor2Sig from Bioconductor...\n")
if (!requireNamespace("BiocManager", quietly = TRUE))
utils::install.packages("BiocManager")
BiocManager::install("decompTumor2Sig")
}
#' Run decompTumor2Sig attribution on a spectra catalog file
#' and known signatures.
#'
#' @param input.catalog File containing input spectra catalog. Columns are
#' samples (tumors), rows are mutation types.
#'
#' @param gt.sigs.file File containing input mutational signatures. Columns are
#' signatures, rows are mutation types.
#'
#' @param out.dir Directory that will be created for the output;
#' abort if it already exits. Log files will be in
#' \code{paste0(out.dir, "/tmp")}.
#'
#' @param seedNumber Specify the pseudo-random seed number
#' used to run deconstructSigs. Setting seed can make the
#' attribution of deconstructSigs repeatable.
#' Default: 1.
#'
#' @param test.only If TRUE, only analyze the first 10 columns
#' read in from \code{input.catalog}.
#' Default: FALSE
#'
#' @param overwrite If TRUE, overwrite existing output.
#' Default: FALSE
#'
#' @return The inferred exposure of \code{deconstructSigs}, invisibly.
#'
#' @details Creates several
#' files in \code{paste0(out.dir, "/sa.output.rdata")}. These are
#' TODO(Steve): list the files
#'
#' @importFrom utils capture.output
#'
#' @export
RundecompTumor2SigAttributeOnly <-
function(input.catalog,
gt.sigs.file,
out.dir,
seedNumber = 1,
test.only = FALSE,
overwrite = FALSE) {
# Install deconstructSigs, if failed to be loaded
if (!requireNamespace("decompTumor2Sig", quietly = TRUE))
InstalldecompTumor2Sig()
# Set seed
set.seed(seedNumber)
seedInUse <- .Random.seed # Save the seed used so that we can restore the pseudorandom series
RNGInUse <- RNGkind() # Save the random number generator (RNG) used
# Read in spectra data from input.catalog file
# spectra: spectra data.frame in ICAMS format
spectra <- ICAMS::ReadCatalog(input.catalog,
strict = FALSE)
if (test.only) spectra <- spectra[ , 1:10]
# Read in ground-truth signature file
# gt.sigs: signature data.frame in ICAMS format
gtSignatures <- ICAMS::ReadCatalog(gt.sigs.file)
# Create output directory
if (dir.exists(out.dir)) {
if (!overwrite) stop(out.dir, " already exits")
} else {
dir.create(out.dir, recursive = T)
}
# Convert ICAMS-formatted spectra and signatures
# into deconstructSigs format
# Requires removal of redundant attributes.
convSpectra <- spectra
attr(convSpectra,"catalog.type") <- NULL
attr(convSpectra,"region") <- NULL
class(convSpectra) <- "matrix"
# To analyze Alexandrov-like spectra catalogs,
# decompoTumor2Sig requires signatures to be a LIST of
# probability vectors (sum equals to 1)
convSpectraList <- list()
G <- ncol(convSpectra)
for (Gcurrent in 1:G){
currentSpectrumName <- colnames(convSpectra)[Gcurrent]
convSpectraList[[currentSpectrumName]] <- convSpectra[,Gcurrent]
convSpectraList[[currentSpectrumName]] <-
convSpectraList[[currentSpectrumName]] / sum(convSpectraList[[currentSpectrumName]])
}
gtSignaturesDT <- gtSignatures
attr(gtSignaturesDT,"catalog.type") <- NULL
attr(gtSignaturesDT,"region") <- NULL
class(gtSignaturesDT) <- "matrix"
# To analyze Alexandrov-like signatures,
# decompoTumor2Sig requires signatures to be a LIST of
# probability vectors (sum equals to 1, tolerance is 1e-5!)
gtSignaturesDTList <- list()
K <- ncol(gtSignaturesDT)
for (Kcurrent in 1:K){
currentSigName <- colnames(gtSignaturesDT)[Kcurrent]
gtSignaturesDTList[[currentSigName]] <- gtSignaturesDT[,Kcurrent]
gtSignaturesDTList[[currentSigName]] <-
gtSignaturesDTList[[currentSigName]] / sum(gtSignaturesDTList[[currentSigName]])
}
exposureList <- decompTumor2Sig::decomposeTumorGenomes(genomes = convSpectraList,
signatures = gtSignaturesDTList)
# Convert exposureList to exposureProb.
exposureProb <- matrix(nrow = K, ncol = G)
rownames(exposureProb) <- colnames(gtSignaturesDT)
colnames(exposureProb) <- colnames(convSpectra)
for(Gcurrent in 1:G){
currentSpectrumName <- names(exposureList)[Gcurrent]
exposureProb[,Gcurrent] <- exposureList[[Gcurrent]]
}
# Convert exposureProb to exposureCounts
exposureCounts <- exposureProb
for(Gcurrent in 1:G){
exposureCounts[,Gcurrent] <- exposureProb[,Gcurrent] * sum(convSpectra[,Gcurrent])
}
# Write exposure counts in ICAMS and SynSig format.
SynSigGen::WriteExposure(exposureCounts,
paste0(out.dir,"/inferred.exposures.csv"))
# Copy ground.truth.sigs to out.dir
file.copy(from = gt.sigs.file,
to = paste0(out.dir,"/ground.truth.signatures.csv"),
overwrite = overwrite)
# Save seeds and session information
# for better reproducibility
capture.output(sessionInfo(), file = paste0(out.dir,"/sessionInfo.txt")) # Save session info
write(x = seedInUse, file = paste0(out.dir,"/seedInUse.txt")) # Save seed in use to a text file
write(x = RNGInUse, file = paste0(out.dir,"/RNGInUse.txt")) # Save seed in use to a text file
# Return inferred exposures
invisible(exposureCounts)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.