#' Run mutSpec extraction and attribution on a spectra catalog file
#'
#' NOTE: mutSpec can only do exposure attribution
#' using SBS96 spectra catalog and signature catalog!
#'
#' @param input.catalog File containing input spectra catalog.
#' Columns are samples (tumors), rows are mutation types.
#'
#' @param out.dir Directory that will be created for the output;
#' abort if it already exits. Log files will be in
#' \code{paste0(out.dir, "/tmp")}.
#'
#' @param CPU.cores Number of CPUs to use in running
#' mutSpec. For a server, 30 cores would be a good
#' choice; while for a PC, you may only choose 2-4 cores.
#' By default (CPU.cores = NULL), the CPU.cores would be equal
#' to \code{(parallel::detectCores())/2}, total number of CPUs
#' divided by 2.
#'
#' @param seedNumber Specify the pseudo-random seed number
#' used to run mutSpec. Setting seed can make the
#' attribution of mutSpec repeatable.
#' Default: 1.
#'
#' @param K.exact,K.range \code{K.exact} is the exact value for
#' the number of signatures active in spectra (K).
#' Specify \code{K.exact} if you know exactly how many signatures
#' are active in the \code{input.catalog}, which is the
#' \code{ICAMS}-formatted spectra file.
#'
#' \code{K.range} is A numeric vector \code{(K.min,K.max)}
#' of length 2 which tell mutSpec to search the best
#' signature number active in spectra, K, in this range of Ks.
#' Specify \code{K.range} if you don't know how many signatures
#' are active in the \code{input.catalog}.
#'
#' WARNING: You must specify only one of \code{K.exact} or \code{K.range}!
#'
#' Default: NULL
#'
#' @param nrun.est.K Number of NMF runs for each possible number of signature.
#' This is used in the step to estimate the most plausible number
#' of signatures in input spectra catalog.
#'
#' @param nrun.extract number of NMF runs for extracting signatures and inferring
#' exposures.
#'
#' @param pConstant A small positive value (a.k.a. pseudocount)
#' to add to every entry in the \code{input.catalog}.
#' Specify a value ONLY if an "non-conformable arrays error"
#' is raised.
#'
#' @param test.only If TRUE, only analyze the first 10 columns
#' read in from \code{input.catalog}.
#' Default: FALSE
#'
#' @param overwrite If TRUE, overwrite existing output.
#' Default: FALSE
#'
#' @return The inferred exposure of \code{mutSpec}, invisibly.
#'
#' @details Creates several
#' files in \code{out.dir}. These are: \itemize{
#'
#' \item \code{extracted.signatures.csv}
#' \item \code{inferred.exposures.csv}
#' \item \code{sessionInfo}
#' }
#'
#' @importFrom utils capture.output
#'
#' @export
RunmutSpec <-
function(input.catalog,
out.dir,
CPU.cores = NULL,
seedNumber = 1,
K.exact = NULL,
K.range = NULL,
nrun.est.K = 50,
nrun.extract = 200,
pConstant = NULL,
test.only = FALSE,
overwrite = FALSE) {
# Check whether ONLY ONE of K or K.range is specified.
bool1 <- is.numeric(K.exact) & is.null(K.range)
bool2 <- is.null(K.exact) & is.numeric(K.range) & length(K.range) == 2
stopifnot(bool1 | bool2)
# Install NMF, if failed to be loaded
if (!requireNamespace("NMF", quietly = TRUE)) {
install.packages("NMF")
}
# Set seed
set.seed(seedNumber)
seedInUse <- .Random.seed # Save the seed used so that we can restore the pseudorandom series
RNGInUse <- RNGkind() # Save the random number generator (RNG) used
# Read in spectra data from input.catalog file
# spectra: spectra data.frame in ICAMS format
spectra <- ICAMS::ReadCatalog(input.catalog,
strict = FALSE)
if (test.only) spectra <- spectra[ , 1:10]
# convSpectra: convert the ICAMS-formatted spectra catalog
# into a matrix which HDP accepts:
# 1. Remove the catalog related attributes in convSpectra
# 2. Transpose the catalog
convSpectra <- spectra
class(convSpectra) <- "matrix"
attr(convSpectra,"catalog.type") <- NULL
attr(convSpectra,"region") <- NULL
# Add pConstant to convSpectra.
if(!is.null(pConstant)) convSpectra <- convSpectra + pConstant
# Create output directory
if (dir.exists(out.dir)) {
if (!overwrite) stop(out.dir, " already exits")
} else {
dir.create(out.dir, recursive = T)
}
# CPU.cores specifies number of CPU cores to use.
# If CPU.cores is not specified, CPU.cores will
# be equal to the minimum of 30 or (total cores)/2
if(is.null(CPU.cores)){
CPU.cores = min(30,(parallel::detectCores())/2)
} else {
stopifnot(is.numeric(CPU.cores))
}
# "P" means that if the program cannot run parallelly, the NMF will abort.
# Therefore, we use "p" instead.
nbCPU <- paste0("vp", CPU.cores)
# Before running NMF packge,
# Load it explicitly to prevent errors.
requireNamespace("NMF")
# Run NMF using ICAMS-formatted spectra catalog
# Determine the best number of signatures (K.best).
# If K.exact is provided, use K.exact as the K.best.
# If K.range is provided, determine K.best by doing raw extraction.
if(bool1){
K.best <- K.exact
print(paste0("Assuming there are ",K.best," signatures active in input spectra."))
}
if(bool2){
# Estimate the number of signatures with our data
# Change K.range to a full vector
# if it is already a full vector, just keep it.
K.range <- seq.int(min(K.range),max(K.range))
# The minum number of signatures can't be lower than 2
estim_r <- NMF::nmfEstimateRank(
convSpectra,
range = K.range,
method = "brunet",
seed = seedNumber,
nrun = nrun.est.K,
.opt=nbCPU)
gc()
gc()
gc()
# Shuffle original data
v_random <- NMF::randomize(convSpectra)
# Estimate quality measures from the shuffled data
estim_r_random <- NMF::nmfEstimateRank(
v_random,
range = K.range,
method = "brunet",
seed = seedNumber,
nrun = nrun.est.K,
.opt = nbCPU)
# Garbage collection
gc()
gc()
gc()
# Plot the estimation for our data and the random ones
grDevices::graphics.off()
options(bitmapType='cairo')
grDevices::png(paste0(out.dir,"/estimation.mutSpec.png"), width=3000, height=2000, res=300)
plot(estim_r, estim_r_random)
invisible( grDevices::dev.off() )
# Choose the best signature number (K.best) active in the spectra
# catalog (input.catalog).
##
# According to paper "A flexible R package for nonnegative matrix factorization"
# (Gaujoux & Seoighe, 2010), the most common approach to choose number of
# signature (K, a.k.a. rank in this paper) is to choose the smallest K for which
# cophenetic correlation coefficient starts decreasing.
for(current.K in K.range)
{
# Stop the cycle if current.K reaches the maximum.
# At max(K.range), next.summary becomes meaningless.
if(current.K == max(K.range))
break
current.summary <- NMF::summary(estim_r$fit[[as.character(current.K)]])
current.cophenetic.coefficient <- current.summary["cophenetic"]
next.summary <- NMF::summary(estim_r$fit[[as.character(current.K+1)]])
next.cophenetic.coefficient <- next.summary["cophenetic"]
if(current.cophenetic.coefficient > next.cophenetic.coefficient)
break
}
K.best <- current.K # Choose K.best as the smallest current.K whose cophenetic
# is greater than cophenetic from (current.K+1).
print(paste0("The best number of signatures is found.",
"It equals to: ",K.best))
}
# Generates a list contain extracted signatures
gc()
gc()
gc()
res <- NMF::nmf(
convSpectra,
rank = K.best,
method = "brunet",
seed = seedNumber,
nrun = nrun.extract,
.opt = nbCPU)
gc()
gc()
gc()
# Recover the matrix W and H
matrixW <- NMF::basis(res) # un-normalized signature matrix
matrixH <- NMF::coef(res)
# normalize each signature's sum to 1
extractedSignatures <- apply(matrixW,2,function(x) x/sum(x))
# Add signature names for signature matrix extractedSignatures
colnames(extractedSignatures) <-
paste("mutSpec",1:ncol(extractedSignatures),sep=".")
extractedSignatures <- ICAMS::as.catalog(extractedSignatures,
region = "unknown",
catalog.type = "counts.signature")
# Output extracted signatures in ICAMS format
ICAMS::WriteCatalog(extractedSignatures,
paste0(out.dir,"/extracted.signatures.csv"))
# Derive exposure count attribution results.
# WARNING: mutSpec can only do exposure attribution
# using SBS96 spectra catalog and signature catalog!
# Rawexposure attributions
rawExposures <- matrixH
# Add signature names for signature matrix extractedSignatures
rownames(rawExposures) <-
paste("mutSpec",1:nrow(rawExposures),sep=".")
# normalize exposure matrix
exposureCounts <- apply(rawExposures,2,function(x) x/sum(x))
# Make exposureCounts real exposure counts.
for (sample in seq(1,ncol(exposureCounts))){
exposureCounts[,sample] <-
colSums(spectra)[sample] * exposureCounts[,sample]
}
# Write exposure counts in ICAMS and SynSig format.
SynSigGen::WriteExposure(exposureCounts,
paste0(out.dir,"/inferred.exposures.csv"))
# Save seeds and session information
# for better reproducibility
capture.output(sessionInfo(), file = paste0(out.dir,"/sessionInfo.txt")) # Save session info
write(x = seedInUse, file = paste0(out.dir,"/seedInUse.txt")) # Save seed in use to a text file
write(x = RNGInUse, file = paste0(out.dir,"/RNGInUse.txt")) # Save seed in use to a text file
# Return a list of signatures and exposures
invisible(list("signature" = extractedSignatures,
"exposure" = exposureCounts))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.