#' Install signeR from Bioconductor
#'
#' @keywords internal
InstallsigneR <- function(){
message("Installing signeR from Bioconductor...\n")
if (!requireNamespace("BiocManager", quietly = TRUE))
utils::install.packages("BiocManager")
BiocManager::install("signeR")
}
#' Run signeR extraction and attribution on a spectra catalog file
#'
#' @param input.catalog File containing input spectra catalog.
#' Columns are samples (tumors), rows are mutation types.
#'
#' @param out.dir Directory that will be created for the output;
#' abort if it already exits. Log files will be in
#' \code{paste0(out.dir, "/tmp")}.
#'
#' @param seedNumber Specify the pseudo-random seed number
#' used to run signeR. Setting seed can make the
#' attribution of signeR repeatable.
#' Default: 1.
#'
#' @param K.exact,K.range \code{K.exact} is the exact value for
#' the number of signatures active in spectra (K).
#' Specify \code{K.exact} if you know exactly how many signatures
#' are active in the \code{input.catalog}, which is the
#' \code{ICAMS}-formatted spectra file.
#'
#' \code{K.range} is A numeric vector \code{(K.min,K.max)}
#' of length 2 which tell signeR to search the best
#' signature number active in spectra, K, in this range of Ks.
#' Specify \code{K.range} if you don't know how many signatures
#' are active in the \code{input.catalog}.
#'
#' WARNING: You must specify only one of \code{K.exact} or \code{K.range}!
#'
#' Default: NULL
#'
#' @param test.only If TRUE, only analyze the first 10 columns
#' read in from \code{input.catalog}.
#' Default: FALSE
#'
#' @param overwrite If TRUE, overwrite existing output.
#' Default: FALSE
#'
#' @return The inferred exposure of \code{signeR}, invisibly.
#'
#' @details Creates several
#' files in \code{out.dir}. These are:
#' TODO(Steve): list the files
#'
#' TODO(Wuyang)
#'
#' @importFrom utils capture.output
#'
#' @export
RunsigneR <-
function(input.catalog,
out.dir,
seedNumber = 1,
K.exact = NULL,
K.range = NULL,
test.only = FALSE,
overwrite = FALSE) {
# Check whether ONLY ONE of K or K.range is specified.
bool1 <- is.numeric(K.exact) & is.null(K.range)
bool2 <- is.null(K.exact) & is.numeric(K.range) & length(K.range) == 2
stopifnot(bool1 | bool2)
# Install signeR, if failed to be loaded
if (!requireNamespace("signeR", quietly = TRUE)) {
InstallsigneR()
}
# Set seed
set.seed(seedNumber)
seedInUse <- .Random.seed # Save the seed used so that we can restore the pseudorandom series
RNGInUse <- RNGkind() # Save the random number generator (RNG) used
# Read in spectra data from input.catalog file
# spectra: spectra data.frame in ICAMS format
spectra <- ICAMS::ReadCatalog(input.catalog,
strict = FALSE)
if (test.only) spectra <- spectra[ , 1:10]
# Create output directory
if (dir.exists(out.dir)) {
if (!overwrite) stop(out.dir, " already exits")
} else {
dir.create(out.dir, recursive = T)
}
# convSpectra: convert the ICAMS-formatted spectra catalog
# into a matrix which signeR accepts:
# 1. Remove the catalog related attributes in convSpectra
# 2. Transpose the catalog
convSpectra <- spectra
class(convSpectra) <- "matrix"
attr(convSpectra,"catalog.type") <- NULL
attr(convSpectra,"region") <- NULL
dimnames(convSpectra) <- dimnames(spectra)
sample.number <- dim(spectra)[2]
convSpectra <- t(convSpectra)
# Determine the best number of signatures (K.best).
# If K.exact is provided, use K.exact as the K.best.
# If K.range is provided, determine K.best by doing raw extraction.
if(bool1){
signeR_out <- signeR::signeR(M=convSpectra, # M: Mutation spectra you want to decompose
#Opport = NULL, # Opport: Abundance (Opportunity) matrix for the spectra (optional)
nsig=K.exact) # nsig: Number of signatures (K)
K.best <- K.exact
print(paste0("Assuming there are ",K.best," signatures active in input spectra."))
}
if(bool2){
# Extraction and attribution when number of signatures (K) is not known:
# automatically determine best number of signatures,
# based on median Bayesian Information Criterion (BIC).
# Step 1: do raw extraction and attribution to test burn-in (1000 times)
# and test sampling (1000) for possible signature numbers (N);
# Step 2: Compare the BIC of these Ns and determine the best number of signatures (Nbest);
# Step 3: do precise extraction and attribution (burn-in: 10000, sampling: 2000);
signeR_out <- signeR::signeR(M=convSpectra, # M: Mutation spectra you want to decompose
#Opport = NULL, # Opport: Abundance (Opportunity) matrix for the spectra (optional)
nlim=K.range) # nlim: Minimal and maximal number of signatures (K.range)
# Record best number of signatures, and verify this choice using BIC-plot
K.best <- signeR_out$Nsign
print(paste0("The best number of signatures is found.",
"It equals to: ",K.best))
grDevices::pdf(paste0(out.dir,"/Nsig.BIC.plot.pdf"))
signeR::BICboxplot(signeR_out)
grDevices::dev.off()
}
# Output extracted signatures in Duke-NUS format
extractedSignaturesRaw <- signeR_out$Phat
colnames(extractedSignaturesRaw) <- paste("signeR",seq(1,K.best),sep = ".")
# Normalize the extracted signatures so that frequencies of each signature sums up to 1
extractedSignatures <- apply(extractedSignaturesRaw,2, function(x) x/sum(x))
rownames(extractedSignatures) <- rownames(spectra)
extractedSignatures <- ICAMS::as.catalog(extractedSignatures,
region = "unknown",
catalog.type = "counts.signature")
# Write extracted signatures
ICAMS::WriteCatalog(extractedSignatures,
paste0(out.dir,"/extracted.signatures.csv"))
# Derive exposure count attribution results.
exposureCounts <- signeR_out$Ehat # Unnormalized exposures
rownames(exposureCounts) <- paste("signeR",seq(1,K.best),sep = ".") # Assign row names of exposure matrix as names of signatures
colnames(exposureCounts) <- colnames(spectra) # Assign column names of exposure matrix as names of tumors
# Normalize the inferred counts so that each column represents exposure of a signature
for(ii in 1:ncol(exposureCounts)) {
exposureCounts[,ii] <- exposureCounts[,ii] / sum(exposureCounts[,ii])
exposureCounts[,ii] <- exposureCounts[,ii] * colSums(spectra)[ii]
}
# Save exposure attribution results
SynSigGen::WriteExposure(exposureCounts,
paste0(out.dir,"/inferred.exposures.csv"))
# Save seeds and session information
# for better reproducibility
capture.output(sessionInfo(), file = paste0(out.dir,"/sessionInfo.txt")) # Save session info
write(x = seedInUse, file = paste0(out.dir,"/seedInUse.txt")) # Save seed in use to a text file
write(x = RNGInUse, file = paste0(out.dir,"/RNGInUse.txt")) # Save seed in use to a text file
# Save signeR output for de novo extracction
save(signeR_out, file = paste0(out.dir,"/signeR_out.RData"))
# Return a list of signatures and exposures
invisible(list("signature" = extractedSignatures,
"exposure" = exposureCounts))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.