postprob_DE: Calculate the posterior probability of being differentially...

Description Usage Arguments Value Author(s) References Examples

Description

Calculate the posterior probability of being differentially expressed for genes in subtypes k (k>=2) compared to subtype 1.

Usage

1
postprob_DE(BUSfits)

Arguments

BUSfits

The BUSfits object output by the function BUSgibbs.

Value

postprob_DE_matr

the matrix of posterior probabilities of being differentially expressed

Author(s)

Xiangyu Luo

References

Xiangyu Luo, Yingying Wei. Batch Effects Correction with Unknown Subtypes. Journal of the American Statistical Association. Accepted.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
rm(list = ls(all = TRUE))  
set.seed(123)
#a toy example, there are 6 samples and 20 genes in each batch
example_Data <- list()

#batch 1
example_Data[[1]] <- rbind(matrix(c(1,1,5,5,10,10,
						3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6))

#batch 2
batch2_effect <- c(2,2,2,1,1)
example_Data[[2]] <- rbind(matrix(c(1,1,5,5,10,10,
						3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch2_effect

#batch 3
batch3_effect <- c(3,2,1,1,2)
example_Data[[3]] <- rbind(matrix(c(1,1,5,5,10,10,
						3,3,7,7,12,12), ncol=6, byrow=TRUE), matrix(c(1,2),nrow=18, ncol=6)) + batch3_effect

set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
postprob_DE(BUSfits)

XiangyuLuo/BUScorrect documentation built on June 14, 2019, 3:31 p.m.