Description Usage Arguments Details Value Author(s) References Examples
The function "BUSgibbs" stands for fitting the Batch effects correction with Unknown Subtypes model (BUS) with the Gibbs Sampler. BUS is capable of (a) correcting batch effects explicitly, (b) grouping samples that share similar characteristics into subtypes, (c) identifying features that distinguish subtypes, and (d) enjoying a linear-order computation complexity. After correcting the batch effects with BUS, the corrected value can be used for other analysis as if all samples are measured in a single batch. We adopt the Bayesian framework and use the Gibbs sampler to conduct posterior inference for the BUS model.
1 2 3 |
Data |
|
n.subtypes |
|
n.iterations |
|
n.records |
The posterior samples in the last |
hyperparameters |
|
showIteration |
If TRUE, the iteration number will be displayed when conducting Gibbs sampler. The default is TRUE. |
Notice that Data
, the input original gene expression values, are organized in the format of an R list with length equal to the batch number. Its b
th element Data[[b]]
is a G
by n_b
matrix, where G
is the gene number and n_b
is the sampler size of batch b
.
L_PosterSamp |
The posterior samples of the intrinsic gene indicators. The return is a G by K-1 by |
Subtypes |
The estimated subtypes, an R list with length equal to the batch number B, in which Subtypes[[b]] is an integer vector showing the subtype indicators of samples in batch b. |
tau_mu_zero |
The estimated tau_mu 0, which is the prior normal distribution's standard deviation of the subtype effects when there is no differential expression. |
p |
The estimated proportion of intrinsic genes. |
pi |
The estimated subtype proportions across batches, a B by K matrix, whose [b,k] element is the estimated proportion of subtype k in the batch b. |
alpha |
The estimated baseline expression levels, a G-dimension vector, whose gth element is the estimated mean gene expression level of gene g in subtype one. |
gamma_PosterSamp |
The posterior samples of location batch effects, a G by B by |
gamma |
The estimated location batch effects, a G by B matrix, where gamma_gb is the “location” batch effect on gene g in the batch b. Note that the first column is zero as the first batch is taken as the reference batch without batch effects. |
sigma_sq_PosterSamp |
The posterior samples of variances, a G by B by |
sigma_sq |
The estimated variance, a G by B matrix, whose [g,b] element is the variance of gene g's expression in the batch b. |
mu_PosterSamp |
The posterior samples of subtype effects, a G by K by |
mu |
The estimated subtype effects, a G by K matrix, whose [g,k] element is the subtype k effect on gene g. Note that the first column is zero as the fist subtype is taken as the baseline subtype. |
BIC |
the BIC value when K = |
Xiangyu Luo
Xiangyu Luo, Yingying Wei. Batch Effects Correction with Unknown Subtypes. Journal of the American Statistical Association. Accepted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | ###############################################################################
#Generate Simulation Data
###############################################################################
rm(list = ls(all = TRUE))
set.seed(123)
B <- 3
#total number of batches
K <- 3
#total number of subtypes
G <- 3000
#total number of genes
pi <- matrix(NA, B, K)
# pi[b,k] stands for the proportion of kth subtype in bth batch
pi[1, ] <- c(0.2, 0.3, 0.5)
pi[2, ] <- c(0.4, 0.2, 0.4)
pi[3, ] <- c(0.3, 0.4, 0.3)
#total number of samples in each bacth.
n_vec <- rep(NA, B)
#n_vec[b] represents the total number of samples in batch b.
n_vec <- c(100, 110, 120)
#Data list
example_Data <- list()
#baseline expression level
alpha <- rep(2, G)
#subtype effect
mu <- matrix(NA, G, K)
#subtype effect, mu[g,k] stands for the kth-subtype effect of gene g
mu[ ,1] <- 0
#the first subtype is taken as the baseline subtype
#the subtype effect of subtype 1 is set to zero
mu[ ,2] <- c(rep(2,G/20), rep(0,G/20),rep(0, G-G/20-G/20))
mu[ ,3] <- c(rep(0,G/20), rep(2,G/20),rep(0, G-G/20-G/20))
#batch effect
gamma <- matrix(NA, B, G)
#'location' batch effect of gene g in batch b
gamma[1, ] <- 0
#the first batch is taken as the reference batch without batch effects
#the batch effect of batch 1 is set to zero
gamma[2, ] <- c(rep(3,G/5),rep(2,G/5),rep(1,G/5),
rep(2,G/5),rep(3,G/5))
gamma[3, ] <- c(rep(1,G/5),rep(2,G/5),rep(3,G/5),
rep(2,G/5),rep(1,G/5))
sigma_square <- matrix(NA, B,G)
#sigma_square[b,g] denotes the error variance of gene g in batch b.
sigma_square[1,] <- rep(0.1, G)
sigma_square[2,] <- rep(0.2, G)
sigma_square[3,] <- rep(0.15, G)
Z <- list()
#subtype indicator. Z[b,j] represents the subtype of sample j in batch b
Z[[1]] <- as.integer(c(rep(1,floor(pi[1,1]*n_vec[1])),rep(2,floor(pi[1,2]*n_vec[1])),
rep(3,floor(pi[1,3]*n_vec[1]))))
Z[[2]] <- as.integer(c(rep(1,floor(pi[2,1]*n_vec[2])),rep(2,floor(pi[2,2]*n_vec[2])),
rep(3,floor(pi[2,3]*n_vec[2]))))
Z[[3]] <- as.integer(c(rep(1,floor(pi[3,1]*n_vec[3])),rep(2,floor(pi[3,2]*n_vec[3])),
rep(3,floor(pi[3,3]*n_vec[3]))))
for(b in 1:B){ #generate data
num <- n_vec[b]
example_Data[[b]] <- sapply(1:num, function(j){
tmp <- alpha + mu[ ,Z[[b]][j]] + gamma[b, ] +
rnorm(G, sd = sqrt(sigma_square[b, ]))
tmp
})
}
###############################################################################
#Apply the BUSgibbs Function
###############################################################################
set.seed(123)
BUSfits <- BUSgibbs(example_Data, n.subtypes = 3, n.iterations = 100, showIteration = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.