Description Usage Arguments Value Author(s) See Also
Log likelihood of zero inflated negative binomial model. This function is designed to allow numerical optimisation of logistic drop-out paramater model on single gene given the negative binomial mean and dispersion parameters.
1 2 | evalLogLikPiZINB_SingleCell(vecTheta, vecCounts, vecMu, scaNormConst, vecDisp,
matPiAllPredictors, strDropModel, vecidxNotZero, vecidxZero)
|
vecTheta |
(numeric vector length linear model) Parameter estimates for logit linear model for drop-out rate. |
vecCounts |
(count vector number of genes) Observed read counts, not observed are NA. |
vecMu |
(vector number of cells) Negative binomial mean parameter estimate. |
scaNormConst |
(scalar) Model scaling factors, one per cell. |
vecDisp |
(vector number of cells) Negative binomial dispersion parameter estimate. |
matPiAllPredictors |
(matrix genes x predictors) Predictors of the drop-out rate in the linear model. Minimum are a constant offset and log of the negative binomial mean parameter. Other gene-specific predictors can be added. |
strDropModel |
(str) "logistic_ofMu", "logistic" [Default "logistic_ofMu"] Definition of drop-out model. "logistic_ofMu" - include the fitted mean in the linear model of the drop-out rate and use offset and matPiConstPredictors. "logistic" - only use offset and matPiConstPredictors. |
vecidxNotZero |
(bool vector number of cells) Whether observation is larger than zero. |
vecidxZero |
(bool vector number of cells) Whether observation is zero. |
scaLogLik (scalar) Value of cost function: zero-inflated negative binomial likelihood.
David Sebastian Fischer
Called by fitting wrapper: fitPi_SingleCell
.
Calls evalLogLikZINB
.
Compiled version: evalLogLikPiZINB_SingleCell_comp.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.