Description Usage Arguments Value Author(s) Examples
Return posteriors of drop-out per gene and cell as matrix for chosen models.
1 | getPostDrop(matCounts, lsMuModel, lsDispModel, lsDropModel, vecGeneIDs)
|
matCounts |
(count matrix genes x cells) Observed read counts, not observed are NA. |
lsMuModel |
(list) Object containing description of gene-wise mean parameter models. |
lsDispModel |
(list) Object containing description of gene-wise dispersion parameter models. |
lsDropModel |
(list) Object containing description of cell-wise drop-out parameter models. |
vecGeneIDs |
(vector of strings) [Default NULL] Gene IDs for which posteriors of drop-out are to be computed. |
(numeric matrix genes x cells) Posterior probability of observation not being generated by drop-out.
David Sebastian Fischer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | lsSimulatedData <- simulateContinuousDataSet(
scaNCells = 20,
scaNConst = 2,
scaNLin = 2,
scaNImp = 2,
scaMumax = 100,
scaSDMuAmplitude = 3,
vecNormConstExternal=NULL,
vecDispExternal=rep(20, 6),
vecGeneWiseDropoutRates = rep(0.1, 6))
objLP <- runLineagePulse(
counts = lsSimulatedData$counts,
dfAnnotation = lsSimulatedData$annot,
strMuModel = "impulse")
# Get posterior of drop-out on alternative model:
# Use H1 model fits.
vecPosteriorDropoutFits <- getPostDrop(
matCounts = lsSimulatedData$counts,
lsMuModel = lsMuModelH1(objLP),
lsDispModel = lsDispModelH1(objLP),
lsDropModel = lsDropModel(objLP),
vecGeneIDs = rownames(lsSimulatedData$counts)[1])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.