dgp <- create_dgp(
.dgp_fun = stop('Add DGP function here.'),
.name = stop('Add name of DGP here.'),
stop('Add additional arguments (if necessary) to pass to DGP here.')
)
method <- create_method(
.method_fun = stop('Add Method function here.'),
.name = stop('Add name of Method here.'),
stop('Add additional arguments (if necessary) to pass to Method here.')
)
nested_pred_cols <- stop('(Optional) Add name of column in `fit_results` with prediction result columns to be unnested.')
true_pred_col <- stop('Add name of column in `fit_results` with true responses here.')
est_pred_col <- stop('Add name of column in `fit_results` with the predicted responses here.')
pred_err <- create_evaluator(
.eval_fun = summarize_pred_err,
.name = 'Prediction Accuracy',
nested_cols = nested_pred_cols,
truth_col = true_pred_col,
estimate_col = est_pred_col
)
pred_err_plot <- create_visualizer(
.viz_fun = plot_pred_err,
.name = 'Prediction Accuracy Plot',
eval_name = 'Prediction Accuracy'
)
experiment <- create_experiment(name = 'Prediction Experiment') %>%
add_dgp(dgp) %>%
add_method(method) %>%
add_evaluator(pred_err) %>%
add_visualizer(pred_err_plot)
init_docs(experiment) #> fill out documentation before proceeding!
results <- run_experiment(
experiment = experiment,
n_reps = stop('Add number of replicates here.'),
save = TRUE
)
render_docs(experiment)
dgp <- create_dgp(
.dgp_fun = stop('Add DGP function here.'),
.name = stop('Add name of DGP here.'),
stop('Add additional arguments (if necessary) to pass to DGP here.')
)
method <- create_method(
.method_fun = stop('Add Method function here.'),
.name = stop('Add name of Method here.'),
stop('Add additional arguments (if necessary) to pass to Method here.')
)
nested_pred_cols <- stop('(Optional) Add name of column in `fit_results` with prediction result columns to be unnested.')
true_pred_col <- stop('Add name of column in `fit_results` with true responses here.')
est_pred_col <- stop('Add name of column in `fit_results` with the predicted responses here.')
prob_pred_cols <- stop('Add name of column(s) in `fit_results` with the predicted probabilities here.')
pred_err <- create_evaluator(
.eval_fun = summarize_pred_err,
.name = 'Prediction Accuracy',
nested_cols = nested_pred_cols,
truth_col = true_pred_col,
estimate_col = est_pred_col,
prob_cols = prob_pred_cols
)
pred_err_plot <- create_visualizer(
.viz_fun = plot_pred_err,
.name = 'Prediction Accuracy Plot',
eval_name = 'Prediction Accuracy'
)
roc_plot <- create_visualizer(
.viz_fun = plot_pred_curve,
.name = 'ROC Plot',
curve = 'ROC',
eval_fun_options = list(
nested_cols = nested_pred_cols,
truth_col = true_pred_col,
prob_cols = prob_pred_cols
)
)
pr_plot <- create_visualizer(
.viz_fun = plot_pred_curve,
.name = 'PR Plot',
curve = 'PR',
eval_fun_options = list(
nested_cols = nested_pred_cols,
truth_col = true_pred_col,
prob_cols = prob_pred_cols
)
)
experiment <- create_experiment(name = 'Prediction Experiment') %>%
add_dgp(dgp) %>%
add_method(method) %>%
add_evaluator(pred_err) %>%
add_visualizer(pred_err_plot) %>%
add_visualizer(roc_plot) %>%
add_visualizer(pr_plot)
init_docs(experiment) #> fill out documentation before proceeding!
results <- run_experiment(
experiment = experiment,
n_reps = stop('Add number of replicates here.'),
save = TRUE
)
render_docs(experiment)
dgp <- create_dgp(
.dgp_fun = stop('Add DGP function here.'),
.name = stop('Add name of DGP here.'),
stop('Add additional arguments (if necessary) to pass to DGP here.')
)
method <- create_method(
.method_fun = stop('Add Method function here.'),
.name = stop('Add name of Method here.'),
stop('Add additional arguments (if necessary) to pass to Method here.')
)
nested_pred_cols <- stop('(Optional) Add name of column in `fit_results` with prediction result columns to be unnested.')
true_pred_col <- stop('Add name of column in `fit_results` with true responses here.')
est_pred_col <- stop('Add name of column in `fit_results` with the predicted responses here.')
nested_feature_cols <- stop('(Optional) Add name of column in `fit_results` with feature importance columns to be unnested here.')
feature_col <- stop('Add name of column in `fit_results` containing the feature names here.')
true_feature_col <- stop('Add name of column in `fit_results` containing the true feature support here.')
feature_imp_col <- stop('Add name of column in `fit_results` containing the feature importances here.')
feature_sel_col <- stop('(Optional) Add name of column in `fit_results` containing the (estimated) selected features here.')
pred_err <- create_evaluator(
.eval_fun = summarize_pred_err,
.name = 'Prediction Accuracy',
nested_cols = nested_pred_cols,
truth_col = true_pred_col,
estimate_col = est_pred_col
)
fi <- create_evaluator(
.eval_fun = summarize_feature_importance,
.name = 'Feature Importances',
nested_cols = nested_feature_cols,
feature_col = feature_col,
imp_col = feature_imp_col
)
feature_sel <- create_evaluator(
.eval_fun = summarize_feature_selection_err,
.name = 'Feature Selection Error',
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
estimate_col = feature_sel_col,
imp_col = feature_imp_col
)
pred_err_plot <- create_visualizer(
.viz_fun = plot_pred_err,
.name = 'Prediction Accuracy Plot',
eval_name = 'Prediction Accuracy'
)
fi_plot <- create_visualizer(
.viz_fun = plot_feature_importance,
.name = 'Feature Importances Plot',
eval_name = 'Feature Importances',
feature_col = feature_col
)
feature_sel_plot <- create_visualizer(
.viz_fun = plot_feature_selection_err,
.name = 'Feature Selection Error Plot',
eval_name = 'Feature Selection Error'
)
feature_roc_plot <- create_visualizer(
.viz_fun = plot_feature_selection_curve,
.name = 'Feature Selection ROC Plot',
curve = 'ROC',
eval_fun_options = list(
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
imp_col = feature_imp_col
)
)
feature_pr_plot <- create_visualizer(
.viz_fun = plot_feature_selection_curve,
.name = 'Feature Selection PR Plot',
curve = 'PR',
eval_fun_options = list(
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
imp_col = feature_imp_col
)
)
experiment <- create_experiment(name = 'Prediction Experiment') %>%
add_dgp(dgp) %>%
add_method(method) %>%
add_evaluator(pred_err) %>%
add_evaluator(fi) %>%
add_evaluator(feature_sel) %>%
add_visualizer(pred_err_plot) %>%
add_visualizer(fi_plot) %>%
add_visualizer(feature_sel_plot) %>%
add_visualizer(feature_roc_plot) %>%
add_visualizer(feature_pr_plot)
init_docs(experiment) #> fill out documentation before proceeding!
results <- run_experiment(
experiment = experiment,
n_reps = stop('Add number of replicates here.'),
save = TRUE
)
render_docs(experiment)
dgp <- create_dgp(
.dgp_fun = stop('Add DGP function here.'),
.name = stop('Add name of DGP here.'),
stop('Add additional arguments (if necessary) to pass to DGP here.')
)
method <- create_method(
.method_fun = stop('Add Method function here.'),
.name = stop('Add name of Method here.'),
stop('Add additional arguments (if necessary) to pass to Method here.')
)
nested_pred_cols <- stop('(Optional) Add name of column in `fit_results` with prediction result columns to be unnested.')
true_pred_col <- stop('Add name of column in `fit_results` with true responses here.')
est_pred_col <- stop('Add name of column in `fit_results` with the predicted responses here.')
prob_pred_cols <- stop('Add name of column(s) in `fit_results` with the predicted probabilities here.')
nested_feature_cols <- stop('(Optional) Add name of column in `fit_results` with feature importance columns to be unnested here.')
feature_col <- stop('Add name of column in `fit_results` containing the feature names here.')
true_feature_col <- stop('Add name of column in `fit_results` containing the true feature support here.')
feature_imp_col <- stop('Add name of column in `fit_results` containing the feature importances here.')
feature_sel_col <- stop('(Optional) Add name of column in `fit_results` containing the (estimated) selected features here.')
pred_err <- create_evaluator(
.eval_fun = summarize_pred_err,
.name = 'Prediction Accuracy',
nested_cols = nested_pred_cols,
truth_col = true_pred_col,
estimate_col = est_pred_col,
prob_cols = prob_pred_cols
)
fi <- create_evaluator(
.eval_fun = summarize_feature_importance,
.name = 'Feature Importances',
nested_cols = nested_feature_cols,
feature_col = feature_col,
imp_col = feature_imp_col
)
feature_sel <- create_evaluator(
.eval_fun = summarize_feature_selection_err,
.name = 'Feature Selection Error',
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
estimate_col = feature_sel_col,
imp_col = feature_imp_col
)
pred_err_plot <- create_visualizer(
.viz_fun = plot_pred_err,
.name = 'Prediction Accuracy Plot',
eval_name = 'Prediction Accuracy'
)
roc_plot <- create_visualizer(
.viz_fun = plot_pred_curve,
.name = 'ROC Plot',
curve = 'ROC',
eval_fun_options = list(
nested_cols = nested_pred_cols,
truth_col = true_pred_col,
prob_cols = prob_pred_cols
)
)
pr_plot <- create_visualizer(
.viz_fun = plot_pred_curve,
.name = 'PR Plot',
curve = 'PR',
eval_fun_options = list(
nested_cols = nested_pred_cols,
truth_col = true_pred_col,
prob_cols = prob_pred_cols
)
)
fi_plot <- create_visualizer(
.viz_fun = plot_feature_importance,
.name = 'Feature Importances Plot',
eval_name = 'Feature Importances',
feature_col = feature_col
)
feature_sel_plot <- create_visualizer(
.viz_fun = plot_feature_selection_err,
.name = 'Feature Selection Error Plot',
eval_name = 'Feature Selection Error'
)
feature_roc_plot <- create_visualizer(
.viz_fun = plot_feature_selection_curve,
.name = 'Feature Selection ROC Plot',
curve = 'ROC',
eval_fun_options = list(
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
imp_col = feature_imp_col
)
)
feature_pr_plot <- create_visualizer(
.viz_fun = plot_feature_selection_curve,
.name = 'Feature Selection PR Plot',
curve = 'PR',
eval_fun_options = list(
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
imp_col = feature_imp_col
)
)
experiment <- create_experiment(name = 'Prediction Experiment') %>%
add_dgp(dgp) %>%
add_method(method) %>%
add_evaluator(pred_err) %>%
add_evaluator(fi) %>%
add_evaluator(feature_sel) %>%
add_visualizer(pred_err_plot) %>%
add_visualizer(roc_plot) %>%
add_visualizer(pr_plot) %>%
add_visualizer(fi_plot) %>%
add_visualizer(feature_sel_plot) %>%
add_visualizer(feature_roc_plot) %>%
add_visualizer(feature_pr_plot)
init_docs(experiment) #> fill out documentation before proceeding!
results <- run_experiment(
experiment = experiment,
n_reps = stop('Add number of replicates here.'),
save = TRUE
)
render_docs(experiment)
dgp <- create_dgp(
.dgp_fun = stop('Add DGP function here.'),
.name = stop('Add name of DGP here.'),
stop('Add additional arguments (if necessary) to pass to DGP here.')
)
method <- create_method(
.method_fun = stop('Add Method function here.'),
.name = stop('Add name of Method here.'),
stop('Add additional arguments (if necessary) to pass to Method here.')
)
nested_feature_cols <- stop('(Optional) Add name of column in `fit_results` with feature importance columns to be unnested here.')
feature_col <- stop('Add name of column in `fit_results` containing the feature names here.')
true_feature_col <- stop('Add name of column in `fit_results` containing the true feature support here.')
feature_imp_col <- stop('Add name of column in `fit_results` containing the feature importances here.')
feature_sel_col <- stop('(Optional) Add name of column in `fit_results` containing the (estimated) selected features here.')
fi <- create_evaluator(
.eval_fun = summarize_feature_importance,
.name = 'Feature Importances',
nested_cols = nested_feature_cols,
feature_col = feature_col,
imp_col = feature_imp_col
)
feature_sel <- create_evaluator(
.eval_fun = summarize_feature_selection_err,
.name = 'Feature Selection Error',
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
estimate_col = feature_sel_col,
imp_col = feature_imp_col
)
fi_plot <- create_visualizer(
.viz_fun = plot_feature_importance,
.name = 'Feature Importances Plot',
eval_name = 'Feature Importances',
feature_col = feature_col
)
feature_sel_plot <- create_visualizer(
.viz_fun = plot_feature_selection_err,
.name = 'Feature Selection Error Plot',
eval_name = 'Feature Selection Error'
)
experiment <- create_experiment(name = 'Feature Selection Experiment') %>%
add_dgp(dgp) %>%
add_method(method) %>%
add_evaluator(fi) %>%
add_evaluator(feature_sel) %>%
add_visualizer(fi_plot) %>%
add_visualizer(feature_sel_plot)
init_docs(experiment) #> fill out documentation before proceeding!
results <- run_experiment(
experiment = experiment,
n_reps = stop('Add number of replicates here.'),
save = TRUE
)
render_docs(experiment)
dgp <- create_dgp(
.dgp_fun = stop('Add DGP function here.'),
.name = stop('Add name of DGP here.'),
stop('Add additional arguments (if necessary) to pass to DGP here.')
)
method <- create_method(
.method_fun = stop('Add Method function here.'),
.name = stop('Add name of Method here.'),
stop('Add additional arguments (if necessary) to pass to Method here.')
)
nested_feature_cols <- stop('(Optional) Add name of column in `fit_results` with feature importance columns to be unnested here.')
feature_col <- stop('Add name of column in `fit_results` containing the feature names here.')
true_feature_col <- stop('Add name of column in `fit_results` containing the true feature support here.')
pval_col <- stop('Add name of column in `fit_results` containing the p-values here.')
inf_err <- create_evaluator(
.eval_fun = summarize_testing_err,
.name = 'Hypothesis Testing Error',
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
pval_col = pval_col
)
fi_pval <- create_evaluator(
.eval_fun = summarize_feature_importance,
.name = 'P-value Summary Statistics',
eval_id = 'pval',
nested_cols = nested_feature_cols,
feature_col = feature_col,
imp_col = pval_col
)
inf_err_plot <- create_visualizer(
.viz_fun = plot_testing_err,
.name = 'Hypothesis Testing Error Plot',
eval_name = 'Hypothesis Testing Error'
)
inf_roc_plot <- create_visualizer(
.viz_fun = plot_testing_curve,
.name = 'Feature ROC Plot',
curve = 'ROC',
eval_fun_options = list(
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
pval_col = pval_col
)
)
inf_pr_plot <- create_visualizer(
.viz_fun = plot_testing_curve,
.name = 'Feature Selection PR Plot',
curve = 'PR',
eval_fun_options = list(
nested_cols = nested_feature_cols,
truth_col = true_feature_col,
pval_col = pval_col
)
)
reject_prob_plot <- create_visualizer(
.viz_fun = plot_reject_prob,
.name = 'Rejection Probability Curve',
feature_col = feature_col,
eval_fun_options = list(
nested_cols = nested_feature_cols,
pval_col = pval_col
)
)
experiment <- create_experiment(name = 'Inference Experiment') %>%
add_dgp(dgp) %>%
add_method(method) %>%
add_evaluator(inf_err) %>%
add_evaluator(fi_pval) %>%
add_visualizer(inf_err_plot) %>%
add_visualizer(inf_roc_plot) %>%
add_visualizer(inf_pr_plot) %>%
add_visualizer(reject_prob_plot)
init_docs(experiment) #> fill out documentation before proceeding!
results <- run_experiment(
experiment = experiment,
n_reps = stop('Add number of replicates here.'),
save = TRUE
)
render_docs(experiment)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.