create_evaluator | R Documentation |
Evaluator
Create an Evaluator which can evaluate()
the performance of
methods in an Experiment.
create_evaluator(
.eval_fun,
.name = NULL,
.doc_options = list(),
.doc_show = TRUE,
...
)
.eval_fun |
The user-defined evaluation function. |
.name |
(Optional) The name of the |
.doc_options |
(Optional) List of options to control the aesthetics of
the displayed |
.doc_show |
If |
... |
User-defined arguments to pass into |
When evaluating or running the Experiment
(see
evaluate_experiment()
or run_experiment()
), the named
arguments fit_results
and vary_params
are automatically
passed into the Evaluator
function .eval_fun()
and serve
as placeholders for the fit_experiment()
results (i.e., the
results from the method fits) and the name of the varying parameter(s),
respectively.
To evaluate the performance of a method(s) fit then,
the Evaluator
function .eval_fun()
should almost always
take in the named argument fit_results
. See
Experiment$fit()
or fit_experiment()
for details on the
format of fit_results
. If the Evaluator
is used for Experiments
with varying parameters,
vary_params
should be used as a stand in for the name of this
varying parameter(s).
A new Evaluator object.
# create DGP
dgp_fun <- function(n, beta, rho, sigma) {
cov_mat <- matrix(c(1, rho, rho, 1), byrow = TRUE, nrow = 2, ncol = 2)
X <- MASS::mvrnorm(n = n, mu = rep(0, 2), Sigma = cov_mat)
y <- X %*% beta + rnorm(n, sd = sigma)
return(list(X = X, y = y))
}
dgp <- create_dgp(.dgp_fun = dgp_fun,
.name = "Linear Gaussian DGP",
n = 50, beta = c(1, 0), rho = 0, sigma = 1)
# create Method
lm_fun <- function(X, y, cols) {
X <- X[, cols]
lm_fit <- lm(y ~ X)
pvals <- summary(lm_fit)$coefficients[-1, "Pr(>|t|)"] %>%
setNames(paste(paste0("X", cols), "p-value"))
return(pvals)
}
lm_method <- create_method(
.method_fun = lm_fun,
.name = "OLS",
cols = c(1, 2)
)
# create Experiment
experiment <- create_experiment() %>%
add_dgp(dgp) %>%
add_method(lm_method) %>%
add_vary_across(.dgp = dgp, rho = seq(0.91, 0.99, 0.02))
fit_results <- fit_experiment(experiment, n_reps=10)
# create an example Evaluator function
reject_prob_fun <- function(fit_results, vary_params = NULL, alpha = 0.05) {
fit_results[is.na(fit_results)] <- 1
group_vars <- c(".dgp_name", ".method_name", vary_params)
eval_out <- fit_results %>%
dplyr::group_by(across({{group_vars}})) %>%
dplyr::summarise(
n_reps = dplyr::n(),
`X1 Reject Prob.` = mean(`X1 p-value` < alpha),
`X2 Reject Prob.` = mean(`X2 p-value` < alpha)
)
return(eval_out)
}
reject_prob_eval <- create_evaluator(.eval_fun = reject_prob_fun,
.name = "Rejection Prob (alpha = 0.05)")
reject_prob_eval$evaluate(fit_results, vary_params = "rho")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.