View source: R/evaluator-lib-utils.R
add_na_counts | R Documentation |
A helper function to append rows with number of NAs (per group, if applicable) to evaluator results tibble.
add_na_counts(out, data, value_col, na_rm, ...)
out |
Evaluator results tibble to append number of NA results to. |
data |
Data used to compute number of NAs. |
value_col |
Character string, specifying the column used to compute the number of NAs. |
na_rm |
A |
... |
Additional name-value pairs to pass to dplyr::mutate() to append columns. |
Tibble with additional rows containing the new metric "num_na" and its corresponding ".estimate"
# generate example fit_results data with NA responses
fit_results <- tibble::tibble(
.rep = rep(1:2, times = 2),
.dgp_name = c("DGP1", "DGP1", "DGP2", "DGP2"),
.method_name = c("Method"),
# true response
y = lapply(1:4, FUN = function(x) c(rnorm(100 - x), rep(NA, x))),
# predicted response
predictions = lapply(1:4, FUN = function(x) rnorm(100))
)
# evaluate root mean squared error and number of NA responses for each row in
# fit_results
rmse_na_fun <- function(data, truth_col, estimate_col, na_rm = TRUE) {
out <- tibble::tibble(
.metric = "rmse",
.estimate = yardstick::rmse_vec(
data[[truth_col]], data[[estimate_col]], na_rm = na_rm
)
) %>%
add_na_counts(data = data, value_col = truth_col, na_rm = na_rm)
return(out)
}
eval_results <- eval_constructor(
fit_results = fit_results,
fun = rmse_na_fun,
truth_col = "y",
estimate_col = "predictions",
na_rm = TRUE
) %>%
tidyr::unnest(.eval_result)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.