recent <- 29
fdummyXor <- function(a , b){
output <- 0
if((a >= 2 ^ 31) && (b >= 2 ^ 31)){
a <- (a - 2 ^ 31)
b <- (b - 2 ^ 31)
output <- bitwXor(a , b)
}else if((a < (2 ^ 31)) && (b < (2 ^ 31))){
output <- bitwXor(a,b)
}else if(a >= 2 ^ 31){
a <- (a - 2 ^ 31)
output <- bitwXor(a,b)
output <- output + 2 ^ 31
}else{
b <- (b - 2 ^ 31)
output <- bitwXor(a,b)
output <- output + 2 ^ 31
}
return(output)
}
xorShift <- function(num)
{
seed <- recent
rands <- c()
for(i in 1:(num + 10))
{
x <- seed
temp <- bitwShiftL(x,13)
x <- dummyXor(x, temp)
temp <- bitwShiftR(x,17)
x <- dummyXor(x, temp)
temp <- bitwShiftL(x,5)
x <- dummyXor(x, temp)
x <- abs(x)
rands <- c(rands, x)
seed <- x
}
for(i in 11:(num+ 10))
{
rands[i] <- (rands[i] / (2^31))
rands[i] <- abs(rands[i])
}
seed <- (seed / 100000)
seed <- ceiling(seed)
seed <- (seed + as.integer((as.double(Sys.time())*1000+Sys.getpid()) %% 50))
assign("recent", seed, envir = .GlobalEnv)
return(rands[11:(num+10)])
}
recent <- 29
rgen <- function(num)
{
seed <- recent
m <- ((2**31) - 1)
a <- 1103515245
c <- 12345
rand <- c(seed)
for(i in 1:(num+1))
{
temp <- a * seed
temp <- temp + c
temp <- temp %% m
rand <- c(rand, temp)
seed <- temp
}
for(i in 2:(num+1))
{
rand[i] <- (rand[i] / (2**31))
}
seed <- (seed + as.integer((as.double(Sys.time())*1000+Sys.getpid()) %% 50))
assign("recent", seed, envir = .GlobalEnv)
return(rand[2:(num+1)])
}
dugen <- function(st, en, num)
{
rands <- rgen(num)
for(i in 1:num)
{
rands[i] <- ((rands[i]* (en - st)) + st)
}
return(rands)
}
cugen <- function(num)
{
rands <- rgen(num)
return(rands)
}
brgen <- function(p, num)
{
rands <- cugen(num)
for(i in 1:num)
{
if(rands[i] > p)
{
rands[i] <- 0
}
else
{
rands[i] <- 1
}
}
return(rands)
}
bigen <- function(p, num)
{
rands <- brgen(p, num)
result <- 0
for(i in 1:num)
{
if(rands[i] == 1)
{
result <- result + 1
}
}
return(result)
}
gegen <- function(p)
{
count <- 0
while(TRUE)
{
tr <- brgen(p,1)
if(tr == 0)
{
count <- (count + 1)
}
else
{
break()
}
}
return(count)
}
library(ggplot2)
expgen <- function(lambda){
x<-(cugen(1)[1])
result<-((-1/lambda)*log(x))
return(result)
}
gagen <- function(lambda, k){
result <- 0
for (i in 1:k){
result <- result + expgen(lambda)
}
return(result)
}
pogen <- function(lambda, t){
times <- vector()
counter <- 0
while (sum(times) < t){
times <- c(times, expgen(lambda))
counter <- counter + 1
}
return(counter)
}
nogen<- function(u,s){
lambda <- 10
tLength <- 10
zResult=(pogen(lambda,tLength)-(lambda*tLength))/sqrt(lambda)
result=zResult*(sqrt(s)) + u
return(resultlt)
}
visualizeCu <- function(brick, color){
test <- vector()
for (i in 1:1000){
test <- c(test, cugen(1))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp , me , sep = "\n")
return(hist(test, brick, xlab = "random numbers", ylab = "count", main =xName, col = color,border = "white"))
}
visualizeCuPlot <- function(){
test <- vector()
for (i in 1:1000){
test <- c(test, cugen(1))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp, me , sep = "\n")
test <- data.frame(test)
return(ggplot(test, aes(x = test)) + geom_density() + geom_vline(xintercept = expected, colour="green", linetype= "dashed", size=1) + geom_vline(xintercept = sd, colour="red", linetype= "dashed", size=1)
+ geom_vline(xintercept = med, colour="dodgerblue1", linetype= "dashed", size=1) )
}
visualizeDu <- function(st,en , brick , color){
test <- vector()
for (i in 1:10000){
test <- c(test, dugen(st,en,1))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp, me ,sep = "\n")
return(hist(test, brick, xlab = "random numbers", ylab = "count", main =xName, col = color,border = "white"))
}
visualizeDuPlot <- function(st , en){
test <- vector()
for (i in 1:10000){
test <- c(test, dugen(st,en,1))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : " , med)
xName <- paste(dev, exp, med , sep = "\n")
test <- data.frame(test)
return(ggplot(test, aes(x = test)) + geom_density() + geom_vline(xintercept = expected, colour="green", linetype= "dashed", size=1) + geom_vline(xintercept = sd, colour="red", linetype= "dashed", size=1)
+ geom_vline(xintercept = med, colour="dodgerblue1", linetype= "dashed", size=1) )
}
visualizebr <- function(p , brick , color){
test <- vector()
for (i in 1:1000){
test <- c(test, brgen(p,1))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp, me ,sep = "\n")
return(hist(test, brick, xlab = "random numbers", ylab = "count", main =xName, col = color,border = "white"))
}
visualizebrPlot <- function(p){
test <- vector()
for (i in 1:1000){
test <- c(test, brgen(p,1))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : " , med)
xName <- paste(dev, exp, med , sep = "\n")
test <- data.frame(test)
return(ggplot(test, aes(x = test)) + geom_density() + geom_vline(xintercept = expected, colour="green", linetype= "dashed", size=1) + geom_vline(xintercept = sd, colour="red", linetype= "dashed", size=1)
+ geom_vline(xintercept = med, colour="dodgerblue1", linetype= "dashed", size=1) )
}
visualizebi <- function(p,num , brick , color){
test <- vector()
for (i in 1:1000){
test <- c(test, bigen(p,num))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp, me ,sep = "\n")
return(hist(test, brick, xlab = "random numbers", ylab = "count", main =xName, col = color,border = "white"))
}
visualizebiPlot <- function(p,num){
test <- vector()
for (i in 1:1000){
test <- c(test, bigen(p,num))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : " , med)
xName <- paste(dev, exp, med , sep = "\n")
test <- data.frame(test)
return(ggplot(test, aes(x = test)) + geom_density() + geom_vline(xintercept = expected, colour="green", linetype= "dashed", size=1) + geom_vline(xintercept = sd, colour="red", linetype= "dashed", size=1)
+ geom_vline(xintercept = med, colour="dodgerblue1", linetype= "dashed", size=1) )
}
visualizegeo <- function(p , brick , color){
test <- vector()
for (i in 1:1000){
test <- c(test, gegen3(p))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp, me ,sep = "\n")
return(hist(test, brick, xlab = "random numbers", ylab = "count", main =xName, col = color,border = "white"))
}
visualizegeoPlot <- function(p){
test <- vector()
for (i in 1:1000){
test <- c(test, gegen3(p))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : " , med)
xName <- paste(dev, exp, med , sep = "\n")
test <- data.frame(test)
return(ggplot(test, aes(x = test)) + geom_density() + geom_vline(xintercept = expected, colour="green", linetype= "dashed", size=1) + geom_vline(xintercept = sd, colour="red", linetype= "dashed", size=1)
+ geom_vline(xintercept = med, colour="dodgerblue1", linetype= "dashed", size=1) )
}
visualizeEXP <- function(lambda , brick , color){
test <- vector()
for (i in 1:1000){
test <- c(test, expgen(lambda))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp, me ,sep = "\n")
return(hist(test, brick, xlab = "random numbers", ylab = "count", main =xName, col = color,border = "white"))
}
visualizeEXPPlot <- function(lambda){
test <- vector()
for (i in 1:1000){
test <- c(test, expgen(lambda))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : " , med)
xName <- paste(dev, exp, med , sep = "\n")
test <- data.frame(test)
return(ggplot(test, aes(x = test)) + geom_density() + geom_vline(xintercept = expected, colour="green", linetype= "dashed", size=1) + geom_vline(xintercept = sd, colour="red", linetype= "dashed", size=1)
+ geom_vline(xintercept = med, colour="dodgerblue1", linetype= "dashed", size=1) )
}
visualizeGAMMA <- function(lambda, k , brick , color){
test <- vector()
for (i in 1:1000){
test <- c(test, gagen(lambda, k))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp, me ,sep = "\n")
return(hist(test, brick, xlab = "random numbers", ylab = "count", main =xName, col = color,border = "white"))
}
visualizeGAMMAPlot <- function(lambda, k){
test <- vector()
for (i in 1:1000){
test <- c(test, gagen(lambda, k))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : " , med)
xName <- paste(dev, exp, med , sep = "\n")
test <- data.frame(test)
return(ggplot(test, aes(x = test)) + geom_density() + geom_vline(xintercept = expected, colour="green", linetype= "dashed", size=1) + geom_vline(xintercept = sd, colour="red", linetype= "dashed", size=1)
+ geom_vline(xintercept = med, colour="dodgerblue1", linetype= "dashed", size=1) )
}
visualizePOISSON <- function(lambda, t , brick , color){
test <- vector()
for (i in 1:1000){
test <- c(test, pogen(lambda, t))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp, me ,sep = "\n")
return(hist(test, brick, xlab = "random numbers", ylab = "count", main =xName, col = color,border = "white"))
}
visualizePOISSONPlot <- function(lambda, t){
test <- vector()
for (i in 1:1000){
test <- c(test, pogen(lambda, t))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : " , med)
xName <- paste(dev, exp, med , sep = "\n")
test <- data.frame(test)
return(ggplot(test, aes(x = test)) + geom_density() + geom_vline(xintercept = expected, colour="green", linetype= "dashed", size=1) + geom_vline(xintercept = sd, colour="red", linetype= "dashed", size=1)
+ geom_vline(xintercept = med, colour="dodgerblue1", linetype= "dashed", size=1) )
}
visualizeNORMAL <- function(u, s , brick , color){
test <- vector()
for (i in 1:1000){
test <- c(test, nogen(u, s))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : ", med)
xName <- paste(dev, exp, me ,sep = "\n")
return(hist(test, brick, xlab = "random numbers", ylab = "count", main =xName, col = color,border = "white"))
}
visualizeNORMALPlot <- function(u, s){
test <- vector()
for (i in 1:1000){
test <- c(test, nogen(u, s))
}
sd <- sd(test)
expected <- mean(test)
med <- median(test)
dev <- paste("standard deviation : ", sd)
exp <- paste("expected value : ", expected)
me <- paste("median : " , med)
xName <- paste(dev, exp, med , sep = "\n")
test <- data.frame(test)
return(ggplot(test, aes(x = test)) + geom_density() + geom_vline(xintercept = expected, colour="green", linetype= "dashed", size=1) + geom_vline(xintercept = sd, colour="red", linetype= "dashed", size=1)
+ geom_vline(xintercept = med, colour="dodgerblue1", linetype= "dashed", size=1) )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.