R/caret_DummyVar.R

Defines functions .RDiag class2ind contr.dummy contr.ltfr predict.dummyVars print.dummyVars dummyVars.default

#' Create A Full Set of Dummy Variables
#'
#' \code{dummyVars} creates a full set of dummy variables (i.e. less than full
#' rank parameterization)
#'
#' Most of the \code{\link[stats]{contrasts}} functions in R produce full rank
#' parameterizations of the predictor data. For example,
#' \code{\link[stats]{contr.treatment}} creates a reference cell in the data
#' and defines dummy variables for all factor levels except those in the
#' reference cell. For example, if a factor with 5 levels is used in a model
#' formula alone, \code{\link[stats]{contr.treatment}} creates columns for the
#' intercept and all the factor levels except the first level of the factor.
#' For the data in the Example section below, this would produce:
#' \preformatted{ (Intercept) dayTue dayWed dayThu dayFri daySat daySun
#'            1      0      0      0      0      0      0
#'            1      0      0      0      0      0      0
#'            1      0      0      0      0      0      0
#'            1      0      1      0      0      0      0
#'            1      0      1      0      0      0      0
#'            1      0      0      0      1      0      0
#'            1      0      0      0      0      1      0
#'            1      0      0      0      0      1      0
#'            1      0      0      0      1      0      0}
#'
#' In some situations, there may be a need for dummy variables for all the
#' levels of the factor. For the same example:
#' \preformatted{ dayMon dayTue dayWed dayThu dayFri daySat daySun
#'       1      0      0      0      0      0      0
#'       1      0      0      0      0      0      0
#'       1      0      0      0      0      0      0
#'       0      0      1      0      0      0      0
#'       0      0      1      0      0      0      0
#'       0      0      0      0      1      0      0
#'       0      0      0      0      0      1      0
#'       0      0      0      0      0      1      0
#'       0      0      0      0      1      0      0}
#'
#' Given a formula and initial data set, the class \code{dummyVars} gathers all
#' the information needed to produce a full set of dummy variables for any data
#' set. It uses \code{contr.ltfr} as the base function to do this.
#'
#' \code{class2ind} is most useful for converting a factor outcome vector to a
#' matrix (or vector) of dummy variables.
#'
#' @aliases dummyVars dummyVars.default predict.dummyVars contr.dummy
#' contr.ltfr class2ind
#' @param formula An appropriate R model formula, see References
#' @param data A data frame with the predictors of interest
#' @param sep An optional separator between factor variable names and their
#' levels. Use \code{sep = NULL} for no separator (i.e. normal behavior of
#' \code{\link[stats]{model.matrix}} as shown in the Details section)
#' @param levelsOnly A logical; \code{TRUE} means to completely remove the
#' variable names from the column names
#' @param fullRank A logical; should a full rank or less than full rank
#' parameterization be used? If \code{TRUE}, factors are encoded to be
#' consistent with \code{\link[stats]{model.matrix}} and the resulting there
#' are no linear dependencies induced between the columns.
#' @param object An object of class \code{dummyVars}
#' @param newdata A data frame with the required columns
#' @param na.action A function determining what should be done with missing
#' values in \code{newdata}. The default is to predict \code{NA}.
#' @param n A vector of levels for a factor, or the number of levels.
#' @param contrasts A logical indicating whether contrasts should be computed.
#' @param sparse A logical indicating if the result should be sparse.
#' @param x A factor vector.
#' @param ... additional arguments to be passed to other methods
#' @return The output of \code{dummyVars} is a list of class 'dummyVars' with
#' elements \item{call }{the function call} \item{form }{the model formula}
#' \item{vars }{names of all the variables in the model} \item{facVars }{names
#' of all the factor variables in the model} \item{lvls }{levels of any factor
#' variables} \item{sep }{\code{NULL} or a character separator} \item{terms
#' }{the \code{\link[stats]{terms.formula}} object} \item{levelsOnly }{a
#' logical}
#'
#' The \code{predict} function produces a data frame.
#'
#' \code{class2ind} returns a matrix (or a vector if \code{drop2nd = TRUE}).
#'
#' \code{contr.ltfr} generates a design matrix.
#' @author \code{contr.ltfr} is a small modification of
#' \code{\link[stats]{contr.treatment}} by Max Kuhn
#' @seealso \code{\link[stats]{model.matrix}}, \code{\link[stats]{contrasts}},
#' \code{\link[stats]{formula}}
#' @references
#' \url{https://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models}
#' @keywords models
#' @examples
#' when <- data.frame(
#'   time = c(
#'     "afternoon", "night", "afternoon",
#'     "morning", "morning", "morning",
#'     "morning", "afternoon", "afternoon"
#'   ),
#'   day = c(
#'     "Mon", "Mon", "Mon",
#'     "Wed", "Wed", "Fri",
#'     "Sat", "Sat", "Fri"
#'   ),
#'   stringsAsFactors = TRUE
#' )
#'
#' levels(when$time) <- list(
#'   morning = "morning",
#'   afternoon = "afternoon",
#'   night = "night"
#' )
#' levels(when$day) <- list(
#'   Mon = "Mon", Tue = "Tue", Wed = "Wed", Thu = "Thu",
#'   Fri = "Fri", Sat = "Sat", Sun = "Sun"
#' )
#'
#' ## Default behavior:
#' model.matrix(~day, when)
#'
#' mainEffects <- dummyVars(~ day + time, data = when)
#' mainEffects
#' predict(mainEffects, when[1:3, ])
#'
#' when2 <- when
#' when2[1, 1] <- NA
#' predict(mainEffects, when2[1:3, ])
#' predict(mainEffects, when2[1:3, ], na.action = na.omit)
#'
#'
#' interactionModel <- dummyVars(~ day + time + day:time,
#'   data = when,
#'   sep = "."
#' )
#' predict(interactionModel, when[1:3, ])
#'
#' noNames <- dummyVars(~ day + time + day:time,
#'   data = when,
#'   levelsOnly = TRUE
#' )
#' predict(noNames, when)
#'
#' head(class2ind(iris$Species))
#'
#' two_levels <- factor(rep(letters[1:2], each = 5))
#' class2ind(two_levels)
#' class2ind(two_levels, drop2nd = TRUE)
#' @export dummyVars
"dummyVars" <-
  function(formula, ...) {
    UseMethod("dummyVars")
  }

#' @rdname dummyVars
#' @method dummyVars default
#' @importFrom stats as.formula model.frame
#' @export
dummyVars.default <- function(formula, data, sep = ".",
                              levelsOnly = FALSE, fullRank = FALSE, ...) {
  formula <- as.formula(formula)
  if (!is.data.frame(data)) {
    data <- as.data.frame(data,
      stringsAsFactors = FALSE
    )
  }

  vars <- all.vars(formula)
  if (any(vars == ".")) {
    vars <- vars[vars != "."]
    vars <- unique(c(vars, colnames(data)))
  }
  isFac <- unlist(lapply(data[, vars, drop = FALSE], is.factor))
  if (sum(isFac) > 0) {
    facVars <- vars[isFac]
    lvls <- lapply(data[, facVars, drop = FALSE], levels)
    if (levelsOnly) {
      tabs <- table(unlist(lvls))
      if (any(tabs > 1)) {
        stop(paste(
          "You requested `levelsOnly = TRUE` but",
          "the following levels are not unique",
          "across predictors:",
          paste(names(tabs)[tabs > 1], collapse = ", ")
        ))
      }
    }
  } else {
    facVars <- NULL
    lvls <- NULL
  }
  trms <- attr(model.frame(formula, data), "terms")
  out <- list(
    call = match.call(),
    form = formula,
    vars = vars,
    facVars = facVars,
    lvls = lvls,
    sep = sep,
    terms = trms,
    levelsOnly = levelsOnly,
    fullRank = fullRank
  )
  class(out) <- "dummyVars"
  out
}

#' @rdname dummyVars
#' @method print dummyVars
#' @export
print.dummyVars <- function(x, ...) {
  cat("Dummy Variable Object\n\n")
  cat("Formula: ")
  print(x$form)
  cat(length(x$vars), " variables, ", length(x$facVars), " factors\n", sep = "")
  if (!is.null(x$sep) & !x$levelsOnly) {
    cat("Variables and levels will be separated by '",
      x$sep, "'\n",
      sep = ""
    )
  }
  if (x$levelsOnly) cat("Factor variable names will be removed\n")
  if (x$fullRank) {
    cat("A full rank encoding is used")
  } else {
    cat("A less than full rank encoding is used")
  }
  cat("\n")
  invisible(x)
}

#' @rdname dummyVars
#' @method predict dummyVars
#' @importFrom stats delete.response model.frame model.matrix na.pass
#' @export
predict.dummyVars <- function(object, newdata, na.action = na.pass, ...) {
  if (is.null(newdata)) stop("newdata must be supplied")
  if (!is.data.frame(newdata)) {
    newdata <-
      as.data.frame(newdata, stringsAsFactors = FALSE)
  }
  if (!all(object$vars %in% names(newdata))) {
    stop(
      paste(
        "Variable(s)",
        paste("'", object$vars[!object$vars %in% names(newdata)],
          "'",
          sep = "",
          collapse = ", "
        ),
        "are not in newdata"
      )
    )
  }
  Terms <- object$terms
  Terms <- delete.response(Terms)
  if (!object$fullRank) {
    oldContr <- options("contrasts")$contrasts
    newContr <- oldContr
    newContr["unordered"] <- "contr.ltfr"
    options(contrasts = newContr)
    on.exit(options(contrasts = oldContr))
  }
  m <- model.frame(Terms, newdata, na.action = na.action, xlev = object$lvls)

  x <- model.matrix(Terms, m)

  cnames <- colnames(x)
  if (object$levelsOnly) {
    for (i in object$facVars) {
      for (j in object$lvls[[i]]) {
        from_text <- paste0(i, j)
        cnames[which(cnames == from_text)] <- j
      }
    }
  }
  if (!is.null(object$sep) & !object$levelsOnly) {
    for (i in object$facVars[order(-nchar(object$facVars))]) {
      ## the default output form model.matrix is NAMElevel with no separator.
      for (j in object$lvls[[i]]) {
        from_text <- paste0(i, j)
        to_text <- paste(i, j, sep = object$sep)
        pos <- which(cnames == from_text)
        # If there are several identical NAMElevel matching (example: "X1"
        # with level "11" and "X11" with level "1")
        if (length(pos) > 1) {
          # If the level j is not the first level of the feature i
          if (which(object$lvls[[i]] == j) > 1) {
            # Then we just have to test for the preceding NAMElevel being
            # NAME(level-1)
            cnames[pos][cnames[pos - 1] == paste(i, object$lvls[[i]][
              which(object$lvls[[i]] == j) - 1
            ], sep = object$sep)] <- to_text
          } else {
            # Otherwise, we have to test for the preceding NAMElevel being
            # (NAME-1)(last_level)
            # Add '(Intercept)'
            cnames[pos][cnames[pos - 1] %in% c(paste(object$facVars[
              order(-nchar(object$facVars))
            ][which(
              object$facVars[order(-nchar(object$facVars))] == i
            ) - 1],
            utils::tail(object$lvls[[object$facVars[
              order(-nchar(object$facVars))
            ][which(object$facVars[
              order(-nchar(object$facVars))
            ] == i) - 1]]], n = 1),
            sep = object$sep
            ), "(Intercept)")] <- to_text
          }
        } else {
          # Otherwise simply replace the last occurence of the pattern
          cnames[pos] <- to_text
        }
      }
    }
  }
  colnames(x) <- cnames
  x[, colnames(x) != "(Intercept)", drop = FALSE]
}

#' @rdname dummyVars
#' @export
contr.ltfr <- function(n, contrasts = TRUE, sparse = FALSE) {
  if (is.numeric(n) && length(n) == 1L) {
    if (n > 1L) {
      levels <- as.character(seq_len(n))
    } else {
      stop("not enough degrees of freedom to define contrasts")
    }
  } else {
    levels <- as.character(n)
    n <- length(n)
  }
  contr <- .RDiag(levels, sparse = sparse)
  if (contrasts) {
    if (n < 2L) {
      stop(gettextf(
        "contrasts not defined for %d degrees of freedom",
        n - 1L
      ), domain = NA)
    }
  }
  contr
}

#' @export
contr.dummy <- function(n, ...) {
  if (is.numeric(n) && length(n) == 1L) {
    if (n > 1L) {
      levels <- as.character(seq_len(n))
    } else {
      stop("not enough degrees of freedom to define contrasts")
    }
  } else {
    levels <- as.character(n)
    n <- length(n)
  }
  out <- diag(n)
  rownames(out) <- levels
  colnames(out) <- levels
  out
}

#' @rdname dummyVars
#' @importFrom stats model.matrix
#' @export
#' @param drop2nd A logical: if the factor has two levels, should a single
#' binary vector be returned?
class2ind <- function(x, drop2nd = FALSE) {
  if (!is.factor(x)) stop("'x' should be a factor")
  y <- model.matrix(~ x - 1)
  colnames(y) <- gsub("^x", "", colnames(y))
  attributes(y)$assign <- NULL
  attributes(y)$contrasts <- NULL
  if (length(levels(x)) == 2 & drop2nd) {
    y <- y[, 1]
  }
  y
}

#  File src/library/stats/R/contrast.R
#  Part of the R package, http://www.R-project.org
#
#  Copyright (C) 1995-2012 The R Core Team
#
#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/

## a fast version of diag(n, .) / sparse-Diagonal() + dimnames
## Originally .Diag in stats:contrast.R

.RDiag <- function(nms, sparse) {
  n <- as.integer(length(nms))
  d <- c(n, n)
  dn <- list(nms, nms)
  #   if (sparse) {
  #     requireNamespace("Matrix", quietly = TRUE)
  #     new("ddiMatrix", diag = "U", Dim = d, Dimnames = dn)
  #   }
  #   else
  array(c(rep.int(c(1, numeric(n)), n - 1L), 1), d, dn)
}
adimajo/MissImp documentation built on April 5, 2022, 6:32 a.m.