library(RODBC)
library(akgfmaps)
library(gapctd)
library(navmaps)
get_data_temp3d <- function() {
channel <- gapctd::get_connected(schema = "AFSC")
survey_definition_ids <- c(47, 52, 98, 143, 78)
region_id <- c("GOA", "AI", "EBS", "NBS", "SLOPE")
event_names <- data.frame(EVENT_TYPE_ID = c(3, 4, 6, 8, 9, 15, 16),
EVENT_NAME = c("on_bottom_time", "eq_time", "haulback_time", "doors_up_time", "doors_out_time", "start_haul_time", "end_haul_time"))
for(ii in 1:length(survey_definition_ids)) {
dir.create(here::here("data", region_id[ii]))
hauls <- RODBC::sqlQuery(
channel = channel,
query = paste0(
"select rbh.cruise, rbh.vessel, rbh.haul, rbh.gear_temperature, rbh.bottom_depth,
rbh.surface_temperature, h.gear_depth, h.haul_id, rbh.start_time, rbh.start_latitude,
rbh.start_longitude, rbh.end_latitude, rbh.end_longitude, rbh.performance, e.event_type_id,
e.date_time
from race_data.hauls h, race_data.cruises c, race_data.surveys s, racebase.haul rbh,
race_data.events e
where h.cruise_id = c.cruise_id
and s.survey_id = c.survey_id
and h.haul = rbh.haul
and c.vessel_id = rbh.vessel
and c.cruise = rbh.cruise
and rbh.performance >= 0
and rbh.abundance_haul = 'Y'
and e.haul_id = h.haul_id
and e.event_type_id in (3, 4, 6, 8, 9, 15, 16)
and s.survey_definition_id = ",
survey_definition_ids[ii]
)
) |>
dplyr::mutate(DATE_TIME = lubridate::with_tz(lubridate::force_tz(DATE_TIME, tzone = "UTC"), tzone = "America/Anchorage"),
HAUL_ID = paste0(VESSEL, CRUISE, HAUL)) |>
dplyr::inner_join(event_names, by = "EVENT_TYPE_ID") |>
dplyr::select(-EVENT_TYPE_ID) |>
tidyr::pivot_wider(values_from = "DATE_TIME", names_from = "EVENT_NAME")
hauls$end_haul_time[is.na(hauls$end_haul_time)] <- hauls$doors_up_time[is.na(hauls$end_haul_time)] + 180
hauls$start_haul_time[is.na(hauls$start_haul_time)] <- hauls$doors_up_time[is.na(hauls$start_haul_time)] - 180
haul_midpoints <- navmaps::start_end_to_midpoint(start_latitude = hauls$START_LATITUDE,
start_longitude = hauls$START_LONGITUDE,
end_latitude = hauls$END_LATITUDE,
end_longitude = hauls$END_LONGITUDE) |>
as.data.frame()
names(haul_midpoints) <- toupper(names(haul_midpoints))
cast_locations <- hauls |>
dplyr::bind_cols(haul_midpoints) |>
tidyr::pivot_longer(cols = c(START_LATITUDE, START_LONGITUDE, END_LATITUDE, END_LONGITUDE, MID_LATITUDE, MID_LONGITUDE)) |>
dplyr::inner_join(
data.frame(name = c("START_LATITUDE", "START_LONGITUDE", "END_LATITUDE", "END_LONGITUDE", "MID_LATITUDE", "MID_LONGITUDE"),
CAST = c("downcast", "downcast", "upcast", "upcast", "bottom", "bottom"),
coord = c("LATITUDE", "LONGITUDE", "LATITUDE", "LONGITUDE", "LATITUDE", "LONGITUDE"))
) |>
dplyr::select(HAUL_ID, START_TIME, BOTTOM_DEPTH, value, CAST, coord) |>
tidyr::pivot_wider(names_from = c("coord"), values_from = value)
temp_depth <- RODBC::sqlQuery(
channel = channel,
query = paste0(
"select bt.temperature, bt.depth, bt.date_time, h.haul, c.vessel_id vessel, c.cruise
from race_data.bathythermics bt, race_data.bathythermic_headers bth, race_data.hauls h,
race_data.cruises c, race_data.surveys s
where bth.haul_id = h.haul_id
and bt.bathythermic_header_id = bth.bathythermic_header_id
and h.cruise_id = c.cruise_id
and s.survey_id = c.survey_id
and bt.depth > 0.1
and bt.temperature > -2.0
and bt.temperature < 20
and s.survey_definition_id = ",
survey_definition_ids[ii]
)
) |> dplyr::mutate(DATE_TIME = lubridate::with_tz(lubridate::force_tz(DATE_TIME, tzone = "UTC"), tzone = "America/Anchorage"),
HAUL_ID = paste0(VESSEL, CRUISE, HAUL)) |>
dplyr::select(-VESSEL, -CRUISE, -HAUL)
temp_depth_rb2 <- RODBC::sqlQuery(channel = channel,
query = paste0(
"select bt.vessel, bt.cruise, bt.haul, bt.date_time,
bt.temperature, bt.depth
from race_edit.rb2_btd bt,
racebase.haul h,
race_data.cruises c,
race_data.surveys s
where bt.vessel = h.vessel
and h.vessel = c.vessel_id
and h.cruise = c.cruise
and bt.cruise = h.cruise
and bt.haul = h.haul
and bt.depth > 0.1
and bt.temperature > -2.0
and bt.temperature < 20
and s.survey_id = c.survey_id
and s.survey_definition_id = ", survey_definition_ids[ii]))
temp_depth_rb2 <- hauls |>
dplyr::select(HAUL_ID) |>
dplyr::inner_join(temp_depth_rb2) |>
dplyr::mutate(HAUL_ID = paste0(VESSEL, CRUISE, HAUL)) |>
dplyr::select(-VESSEL, -CRUISE, -HAUL)
temp_depth <- dplyr::filter(temp_depth, HAUL_ID %in% unique(hauls$HAUL_ID))
hauls <- dplyr::filter(hauls, HAUL_ID %in% unique(temp_depth$HAUL_ID))
temp_depth <- dplyr::bind_rows(temp_depth, temp_depth_rb2)
unique_haul_id <- sort(unique(temp_depth$HAUL_ID))
profile_dat <- data.frame()
for(jj in 1:length(unique_haul_id)) {
if(jj%%100 == 0) {
message(paste0(jj, "/", length(unique_haul_id)))
}
sel_haul_temp <- dplyr::filter(temp_depth, HAUL_ID == unique_haul_id[jj])
temp_depth <- dplyr::filter(temp_depth, HAUL_ID != unique_haul_id[jj])
sel_haul_events <- dplyr::filter(hauls, HAUL_ID == unique_haul_id[jj])
if(nrow(sel_haul_temp) < 10) {
next
}
haul_temp_oce <- oce::as.oce(
data.frame(datetime = sel_haul_temp$DATE_TIME,
temperature = sel_haul_temp$TEMPERATURE,
depth = sel_haul_temp$DEPTH) |>
dplyr::arrange(datetime) |>
dplyr::mutate(timeS = as.numeric(difftime(datetime, min(datetime), units = "secs")))
) |>
gapctd::lowpass_filter(variables = "temperature") # Low-pass filter temperature
haul_temp_oce@metadata$startTime <- min(haul_temp_oce@data$datetime)
if(survey_definition_ids[ii] %in% c(47, 52)) {
dc_start <- sel_haul_events$start_haul_time
dc_end <- sel_haul_events$eq_time
uc_start <- sel_haul_events$haulback_time
uc_end <- sel_haul_events$end_haul_time
}
if(survey_definition_ids[ii] %in% c(78, 98, 143)) {
dc_start <- sel_haul_events$start_haul_time
dc_end <- sel_haul_events$on_bottom_time
uc_start <- sel_haul_events$haulback_time
uc_end <- sel_haul_events$end_haul_time
}
dc_dat <- NULL
uc_dat <- NULL
dc_dat <- haul_temp_oce |>
gapctd::section_oce(by = "datetime", start = dc_start, end = dc_end, cast_direction = "downcast") |>
gapctd::bin_average(by = "depth", interpolate_missing = FALSE, exclude_bad_flag = FALSE)
uc_dat <- haul_temp_oce |>
gapctd::section_oce(by = "datetime", start = uc_start, end = uc_end, cast_direction = "upcast") |>
gapctd::bin_average(by = "depth", interpolate_missing = FALSE, exclude_bad_flag = FALSE)
bottom_dat <- haul_temp_oce |>
gapctd::section_oce(by = "datetime", start = dc_end, end = uc_start, cast_direction = "bottom")
if(!is.null(dc_dat)) {
dc_dat <- as.data.frame(dc_dat@data) |>
dplyr::select(depth, temperature)
dc_dat$cast <- "downcast"
}
if(!is.null(uc_dat)) {
uc_dat <- as.data.frame(uc_dat@data) |>
dplyr::select(depth, temperature)
uc_dat$cast <- "upcast"
}
if(!is.null(bottom_dat)) {
bottom_dat <- data.frame(temperature = mean(bottom_dat@data$temperature, na.rm = TRUE),
depth = mean(bottom_dat@data$depth, na.rm = TRUE))
bottom_dat$cast <- "bottom"
}
if(any(c(!is.null(dc_dat), !is.null(uc_dat), !is.null(bottom_dat)))) {
haul_dat <- dplyr::bind_rows(dc_dat, uc_dat, bottom_dat)
names(haul_dat) <- toupper(names(haul_dat))
haul_dat$HAUL_ID <- unique_haul_id[jj]
profile_dat <- dplyr::bind_rows(profile_dat, haul_dat)
}
}
profile_dat <- dplyr::left_join(profile_dat, cast_locations)
saveRDS(list(profile = profile_dat,
haul = hauls),
file = here::here("data",
region_id[ii],
paste0("profile_data_", region_id[ii], ".rds")))
}
}
get_data_temp3d()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.