R/fit.isop.R

Defines functions fit.isotonic.cols fit.isotonic.rows .calc.ll.isop fit.isop

Documented in fit.isop

## File Name: fit.isop.R
## File Version: 2.15

############################################################
# Fit ISOP Model
fit.isop <- function( freq.correct, wgt, conv=.0001,
              maxit=100, progress=TRUE, calc.ll=TRUE){
    #****
    # initializations
    # monotone regression
    M1 <- as.matrix(freq.correct)
    I <- ncol(M1)
    PP <- nrow(M1)
    wgt <- as.matrix(wgt)
    # isotonic row regression
    res <- fit.isotonic.rows(X=M1, wgt=wgt )
    RX <- res$RX
    IR <- res$IR
    # isotonic column regression
    res <- fit.isotonic.cols(X=RX, wgt=wgt )
    CX <- res$CX
    IC <- res$IC
    X <- M1
    deviation <- 1
    iter <- 0
    if (progress){ cat("\n*******ISOP Model***********\n") }
    #****
    # ISOP algorithm
    while( ( iter < maxit) & ( deviation > conv ) ){
        Xold <- X
        # isotonic rows
        res <- fit.isotonic.rows(X=X-IC, wgt=wgt )
        RX <- res$RX
        IR <- res$IR
        # isotonic columns
        res <- fit.isotonic.cols(X=X-IR, wgt=wgt )
        CX <- res$CX
        IC <- res$IC
        # updated X
        X <- Xold - IR - IC
        # calculate deviation
        deviation <- sum( ( X - Xold )^2*wgt )
        iter <- iter + 1
        if (progress){
            cat( "Iteration", iter, "- Deviation=",  round( deviation, 6 ), "\n")
            utils::flush.console()
                    }
                    }  # end algorithm
    ###############################################
    RR <- nrow(freq.correct)
    CC <- ncol(freq.correct)
    if ( calc.ll ){
        CX[ CX > 1 ] <- 1
        CX[ CX < 0 ] <- 0
                }
    dfr0 <- data.frame( "stud.index"=rep(1:RR, CC),
                "item.index"=rep(1:CC,each=RR),
                "wgt"=matrix( as.matrix( wgt ), RR*CC, 1 ),
                "freq"=matrix( as.matrix(freq.correct ), RR*CC, 1 ),
                "freq.fitted"=matrix( as.matrix( CX ), RR*CC, 1 )
                        )
    dfr0 <- dfr0[ order( dfr0$stud.index * 1000 + dfr0$item.index ), ]
    # deviation criterion
    wgt1 <- ( wgt / colSums( wgt ) ) / ncol(wgt)
    fit <- sqrt( sum( ( M1-CX  )^2 * wgt1  ) )
    #****
    # calculate likelihood
    ll <- NULL
    if (calc.ll){
        ll <- list(
            "ll.ind"=.calc.ll.isop( freq.correct, wgt, irtfitted=freq.correct )
                        )
        ll$ll.isop <- .calc.ll.isop( freq.correct, wgt, irtfitted=CX )
        NW <- mean( colSums(wgt) )
        ll$llcase.ind <- ll$ll.ind /NW
        ll$llcase.isop <- ll$ll.isop /NW
        }
    # collect item and person scores
    item.sc <- ( seq( 0, I-1 ) + .5 ) / I
    person.sc <- ( seq( 0, PP-1 ) + .5 ) / PP
    # output
    res <- list( "fX"=CX, "ResX"=M1 - CX, "fit"=fit,
        "item.sc"=item.sc, "person.sc"=person.sc, "ll"=ll,
        "freq.fitted"=dfr0)
    return(res)
        }
############################################################
# calculate likelihood for saturated and fitted models
.calc.ll.isop <- function( freq.correct, wgt, irtfitted, eps=10^(-20) ){
    ll <- sum( wgt * freq.correct * log( irtfitted + eps ) +
            wgt * (1-freq.correct) * log( 1 - irtfitted + eps ) )
    return(ll)
        }
########################################################


#****************************************
# fit isotonic rows
fit.isotonic.rows <- function( X, wgt ){
    M2 <- X
    RR <- nrow(M2)
#    for (rr in 1:RR){
#        M2[rr,] <- monoreg(x=X[rr,], w=wgt[rr,] )$yf
#                }
#    RX <- M2
    RX <- monoreg.rowwise(X,wgt)
    IX <- X - RX
    res <- list( "X"=X, "RX"=RX, "IR"=IX )
    return(res)
        }

#****************************************
# fit isotonic columns
fit.isotonic.cols <- function( X, wgt ){
    M2 <- X
    RR <- ncol(M2)
#    for (rr in 1:RR){
#        M2[,rr] <- monoreg(x=X[,rr], w=wgt[,rr] )$yf
#                }
#    RX <- M2
    RX <- monoreg.colwise(X,wgt)
    IX <- X - RX
    res <- list( "X"=X, "CX"=RX, "IC"=IX )
    return(res)
        }
#******************************************
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.