R/smirt_postproc.R

Defines functions .smirt.person.parameters

## File Name: smirt_postproc.R
## File Version: 0.123

#*** person parameter estimates
.smirt.person.parameters <- function( data, D, theta.k,
    p.xi.aj, p.aj.xi, weights )
{

    person <- data.frame(case=1L:(nrow(data)), M=rowMeans( data, na.rm=TRUE))
    EAP.rel <- rep(0,D)
    names(EAP.rel) <- colnames(theta.k)
    nstudl <- rep(1,nrow(data))
    for (dd in 1L:D){ #dd <- 1
        dd1 <- colnames(theta.k)[dd]
        person$EAP <- rowSums( p.aj.xi * outer( nstudl, theta.k[,dd] ) )
        person$SE.EAP <- sqrt(rowSums( p.aj.xi * outer( nstudl, theta.k[,dd]^2 ) ) -
                                            person$EAP^2)
        EAP.variance <- stats::weighted.mean( person$EAP^2, weights ) -
                        ( stats::weighted.mean( person$EAP, weights ) )^2
        EAP.error <- stats::weighted.mean( person$SE.EAP^2, weights )
        EAP.rel[dd] <- EAP.variance / ( EAP.variance + EAP.error )
        colnames(person)[ which( colnames(person)=="EAP" ) ] <-
                                                paste("EAP.", dd1, sep="")
        colnames(person)[ which( colnames(person)=="SE.EAP" ) ] <-
                                                paste("SE.EAP.", dd1, sep="")
        }
    if ( is.null( names(EAP.rel) ) ){
        names(EAP.rel) <- paste0( "Dim", 1L:(length(EAP.rel)) )
    }
    # MLE
    mle.est <- theta.k[ max.col( p.xi.aj ),, drop=FALSE]
    colnames(mle.est) <- paste0( "MLE.", names(EAP.rel))
    person <- cbind( person, mle.est )
    # MAP
    mle.est <- theta.k[ max.col( p.aj.xi ),, drop=FALSE]
    colnames(mle.est) <- paste0( "MAP.", names(EAP.rel))
    person <- cbind( person, mle.est )
    # results
    res <- list( person=person, EAP.rel=EAP.rel )
    return(res)
}
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.