## File Name: summary.rasch.mirtlc.R
## File Version: 7.13
#*******************************************************
# Summary for rasch.mirtlc object *
summary.rasch.mirtlc <- function( object,... ){
# object ... object from rasch.mml #
cat("---------------------------------------------------------------------------------------------------------- \n")
d1 <- utils::packageDescription("sirt")
cat( paste( d1$Package, " ", d1$Version, " (", d1$Date, ")", sep=""), "\n\n" )
cat( "Date of Analysis:", paste( object$s2 ), "\n" )
cat("Computation time:", print(object$s2 - object$s1), "\n\n")
cat("Multidimensional Item Response Latent Class Model \n\n")
modeltype <- object$modeltype
if (object$modeltype=="LC" ){
cat("Latent Class Model with", object$Nclasses, "Classes",
" - ", object$G, "Group(s)\n")
}
if (object$modeltype %in% c("MLC1","MLC2") ){
if (modeltype=="MLC1"){
cat("Multidimensional Latent Class Rasch Model with\n " )
}
if (modeltype=="MLC2"){
cat("Multidimensional Latent Class 2PL Model with\n " )
}
cat( object$Nclasses, "Classes",
", ", object$G, "Group(s)", ",",
object$D, "Dimension(s)\n")
}
if (object$distribution.trait=="normal" ){
cat(" Normal distribution assumption\n" )
}
if (object$distribution.trait=="smooth2" ){
cat(" Log-linear Smoothing (2 Moments)\n" )
}
if (object$distribution.trait=="smooth3" ){
cat(" Log-linear Smoothing (3 Moments)\n" )
}
if (object$distribution.trait=="smooth4" ){
cat(" Log-linear Smoothing (4 Moments)\n" )
}
cat("---------------------------------------------------------------------------------------------------------- \n")
cat( "Number of iterations=", object$iter, "\n" )
cat( "Deviance=", round( object$deviance, 2 ), " | " )
cat( "Log Likelihood=", round( -object$deviance/2, 2 ), "\n" )
cat( "Number of persons=", object$ic$n, "\n" )
cat( "Number of estimated item parameters=", object$ic$itempars, "\n" )
cat( "Number of estimated distribution parameters=", object$ic$traitpars, "\n" )
cat( "Number of estimated parameters=", object$ic$np, "\n" )
cat( "AIC=", round( object$ic$AIC, 2 ), " | penalty=", round( object$ic$AIC - object$ic$deviance,2 ),
" | AIC=-2*LL + 2*p \n" )
cat( "AICc=", round( object$ic$AICc, 2 )," | penalty=", round( object$ic$AICc - object$ic$deviance,2 ) )
cat(" | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)\n" )
cat( "BIC=", round( object$ic$BIC, 2 ), " | penalty=", round( object$ic$BIC - object$ic$deviance,2 ),
" | BIC=-2*LL + log(n)*p \n" )
cat( "CAIC=", round( object$ic$CAIC, 2 )," | penalty=", round( object$ic$CAIC - object$ic$deviance,2 ) )
cat(" | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)\n\n" )
cat("---------------------------------------------------------------------------------------------------------- \n")
cat("Trait Distribution\n")
obji <- object$pi.k
if ( object$modeltype %in% c("MLC1","MLC2") ){ obji <- object$trait }
obji <- round( obji, 3)
print( obji )
if ( object$modeltype %in% c("MLC1","MLC2") ){
cat( "\nM Trait: ", round( object$mean.trait, 3 ), "\n")
cat( "SD Trait: ", round( object$sd.trait, 3 ), "\n")
cat( "Skewness Trait: ", round( object$skewness.trait, 3 ), "\n")
if ( object$D > 1){
cat( "Correlations Trait: \n" )
for (gg in 1:object$G){
cat("Group", gg, "\n")
print( round( object$cor.trait[,,gg], 3 ) )
}
}
}
cat("---------------------------------------------------------------------------------------------------------- \n")
cat("Item Parameters \n")
cat("Item Probabilities\n")
obji <- t(object$pjk)
obji <- round( obji, 3)
print( obji )
if ( object$modeltype %in% c("MLC1","MLC2") ){
cat("\nItem Parameter \n")
obji <- object$item
obji <- round( obji, 3)
print( obji )
}
}
#*******************************************************
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.