#' sl3 extension: multivariate adaptive polynomial spline regression (polymars)
#' and polychotomous regression and multiple classification (polyclass)
#'
#' This is a copy of sl3::Lrnr_polspline modified to supress all outputs
#'
#' This learner provides fitting procedures for an adaptive regression procedure
#' using piecewise linear splines to model the response, using the function
#' \code{\link[polspline]{polymars}} or \code{\link[polspline]{polyclass}} from
#' the \code{polspline} package as appropriate.
#'
#' @docType class
#'
#' @importFrom R6 R6Class
#' @importFrom stats predict
#'
#' @export
#'
#' @keywords data
#'
#' @return Learner object with methods for training and prediction. See
#' \code{\link{Lrnr_base}} for documentation on learners.
#'
#' @format \code{\link{R6Class}} object.
#'
#' @family Learners
#'
#' @section Parameters:
#' \describe{
#' \item{\code{cv}}{The number of cross-validation folds to be used in
#' evaluating the sequence of fit models. This is only passed to
#' \code{\link[polspline]{polyclass}} for binary/categorical outcomes.
#' }
#' \item{\code{...}}{Other parameters passed to either
#' \code{\link[polspline]{polymars}} or \code{\link[polspline]{polyclass}}.
#' See their documentation for details.
#' }
#' }
#
Lrnr_polspline_quiet <- R6Class(
classname = "Lrnr_polspline_quiet", inherit = Lrnr_base,
portable = TRUE, class = TRUE,
public = list(
initialize = function(cv = 5, ...) {
params <- args_to_list()
super$initialize(params = params, ...)
}
),
private = list(
.properties = c("continuous", "binomial", "categorical", "weights"),
.train = function(task) {
args <- self$params
outcome_type <- self$get_outcome_type(task)
if (outcome_type$type == "continuous") {
if (task$has_node("weights")) {
args$weights <- task$weights
}
args$predictors <- task$X
args$responses <- outcome_type$format(task$Y)
zz <- textConnection("a", open="w")
capture.output(fit_object <- .call_with_args_vibr(polspline::polymars, args))
close(zz)
} else if (outcome_type$type %in% c("binomial", "categorical")) {
if (task$has_node("weights")) {
args$weight <- task$weights
}
args$cov <- task$X;
args$data <- outcome_type$format(task$Y)
zz <- textConnection("a", open="w")
capture.output(fit_object <- .call_with_args_vibr(polspline::polyclass, args))
close(zz)
} else {
stop("Lrnr_polspline_quiet does not support the designated outcome type.")
}
return(fit_object)
},
.predict = function(task) {
outcome_type <- self$get_outcome_type(task)
if (outcome_type$type == "continuous") {
preds <- stats::predict(object = private$.fit_object, x = task$X)
} else if (outcome_type$type %in% c("binomial", "categorical", "constant")) {
preds <- polspline::ppolyclass(
fit = private$.fit_object,
cov = task$X
)[, 2]
}
return(preds)
},
.required_packages = c("polspline")
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.