## ----setup--------------------------------------------------------------------
# load SBF package
library(SBF)
## -----------------------------------------------------------------------------
# install packages
pkgs <- c("data.table", "dplyr", "matrixStats")
require_install <- pkgs[!(pkgs %in% row.names(installed.packages()))]
if (length(require_install))
install.packages(require_install)
suppressPackageStartupMessages({
library(data.table)
library(dplyr)
library(matrixStats)
})
## -----------------------------------------------------------------------------
species <- c("Homo_sapiens", "Mus_musculus")
species_short <- sapply(species, getSpeciesShortName)
species_short
common_celltypes <- c("hsc", "clp", "cmp", "nkcell", "cd8tcell", "cd4tcell",
"bcell", "cd14monocytes", "eosinophil", "neutrophil")
## -----------------------------------------------------------------------------
# set the path to the working directory. Change this accordingly
path <- "~/Dropbox/0.Analysis/0.paper/"
counts_list <- metadata_list <- list()
for (sp in species) {
# read blood logTPM counts for each species
counts <- read.table(paste0(path, "human_mouse_blood_counts/", sp,
"_blood_logtpm.tsv"), header = TRUE, sep = "\t",
row.names = 1)
info <- data.table::tstrsplit(colnames(counts), "_")
metadata <- data.frame(project = info[[1]],
species = info[[2]],
tissue = info[[3]],
gsm = info[[4]],
name = colnames(counts),
stringsAsFactors = FALSE)
metadata$ref <- seq_len(nrow(metadata))
metadata$key <- paste0(metadata$species, "_", metadata$tissue)
metadata$tissue_factor <- factor(metadata$tissue)
counts_list[[sp]] <- counts
metadata_list[[sp]] <- metadata
}
sapply(counts_list, dim)
## -----------------------------------------------------------------------------
avg_counts <- list()
for (sp in species) {
avg_counts[[sp]] <- calcAvgCounts(counts_list[[sp]], metadata_list[[sp]])
}
## -----------------------------------------------------------------------------
# check tissue columns are matching in each species
c_tissues <- as.data.frame(sapply(avg_counts, function(x) {
data.table::tstrsplit(colnames(x), "_")[[2]]
}))
if (!all(apply(c_tissues, 1, function(x) all(x == x[1])))) {
stop("Error! columns not matching")
}
## -----------------------------------------------------------------------------
sapply(avg_counts, dim)
## -----------------------------------------------------------------------------
# remove empty rows
removeZeros <- function(df) {
return(df[rowSums(df) > 0, ])
}
avg_counts <- lapply(avg_counts, removeZeros)
sapply(avg_counts, dim)
# update counts_list
counts_list_sub <- list()
for (sp in names(avg_counts)) {
counts_list_sub[[sp]] <- counts_list[[sp]][row.names(avg_counts[[sp]]), ,
drop = FALSE]
}
## -----------------------------------------------------------------------------
# first lets compute OSBF without updating the initial estimate of V.
# U and Delta are updated in this case
cat(format(Sys.time(), "%a %b %d %X %Y"), "\n")
osbf_noVupdate <- SBF(avg_counts, orthogonal = TRUE, transform_matrix = TRUE,
minimizeError = TRUE,
optimizeV = FALSE, tol = 1e-3)
cat(format(Sys.time(), "%a %b %d %X %Y"), "\n")
# Now lets compute OSBF updating all three factors (U, Delta, V)
cat("optimizing V = TRUE\n")
cat(format(Sys.time(), "%a %b %d %X %Y"), "\n")
osbf <- SBF(avg_counts, orthogonal = TRUE, transform_matrix = TRUE,
minimizeError = TRUE,
optimizeV = TRUE, tol = 1e-3)
cat(format(Sys.time(), "%a %b %d %X %Y"), "\n")
## -----------------------------------------------------------------------------
cat("\n", sprintf("%-27s:", "Final error [No V update]"), sprintf("%16.2f",
osbf_noVupdate$error))
cat("\n", sprintf("%-27s:", "Final error [With V update]"), sprintf("%16.2f",
osbf$error))
cat("\n", sprintf("%-27s:", "# of update [No V update]"), sprintf("%16d",
osbf_noVupdate$error_pos))
cat("\n", sprintf("%-27s:", "# of update [With V update]"), sprintf("%16d",
osbf$error_pos))
## -----------------------------------------------------------------------------
osbf_noVupdate$error / osbf$error
## -----------------------------------------------------------------------------
par(mfrow = c(1, 3))
plot(x = seq_len(length(osbf$error_vec)), y = osbf$error_vec,
xlab = "# of updates (step 1 -> )",
ylab = "Factorization error", col = "red")
plot(x = 10:length(osbf$error_vec),
y = osbf$error_vec[10:length(osbf$error_vec)],
xlab = "# of updates (step 10 -> )",
ylab = "Factorization error", col = "red")
plot(x = 50:length(osbf$error_vec),
y = osbf$error_vec[50:length(osbf$error_vec)],
xlab = "# of updates (step 50 -> )",
ylab = "Factorization error", col = "red")
## -----------------------------------------------------------------------------
zapsmall(osbf_noVupdate$v %*% t(osbf_noVupdate$v))
zapsmall(osbf$v %*% t(osbf$v))
## -----------------------------------------------------------------------------
cat("\nPercentage for each delta [No V update]:")
percentInfo_noVupdate <- calcPercentInfo(osbf_noVupdate)
for (i in names(osbf_noVupdate$delta)) {
cat("\n", sprintf("%-25s:", i), sprintf("%8.2f", percentInfo_noVupdate[[i]]))
}
percentInfo <- calcPercentInfo(osbf)
for (i in names(osbf$delta)) {
cat("\n", sprintf("%-25s:", i), sprintf("%8.2f", percentInfo[[i]]))
}
## -----------------------------------------------------------------------------
# project profles using no V update estimates
# we can project both mean expression profiles as well as individual expression
# profiles
df_proj_avg_noVupdate <- projectCounts(avg_counts, osbf_noVupdate)
meta <- data.table::tstrsplit(row.names(df_proj_avg_noVupdate), "_")
df_proj_avg_noVupdate$tissue <- factor(meta[[2]])
df_proj_avg_noVupdate$species <- factor(meta[[1]])
df_proj_avg_noVupdate <- df_proj_avg_noVupdate %>%
mutate(species = factor(species, levels = species_short))
df_proj_noVupdate <- projectCounts(counts_list_sub, osbf_noVupdate)
meta1 <- data.table::tstrsplit(row.names(df_proj_noVupdate), "_")
df_proj_noVupdate$tissue <- factor(meta1[[3]])
df_proj_noVupdate$species <- factor(meta1[[2]])
df_proj_noVupdate <- df_proj_noVupdate %>% mutate(species = factor(species,
levels = species_short))
## -----------------------------------------------------------------------------
# project using V update estimates
df_proj_avg <- projectCounts(avg_counts, osbf)
meta <- data.table::tstrsplit(row.names(df_proj_avg), "_")
df_proj_avg$tissue <- factor(meta[[2]])
df_proj_avg$species <- factor(meta[[1]])
df_proj_avg <- df_proj_avg %>% mutate(species = factor(species,
levels = species_short))
df_proj <- projectCounts(counts_list_sub, osbf)
meta1 <- data.table::tstrsplit(row.names(df_proj), "_")
df_proj$tissue <- factor(meta1[[3]])
df_proj$species <- factor(meta1[[2]])
df_proj <- df_proj %>% mutate(species = factor(species,
levels = species_short))
## -----------------------------------------------------------------------------
# install packages
pkgs <- c("grid", "ggthemes", "ggplot2")
require_install <- pkgs[!(pkgs %in% row.names(installed.packages()))]
if (length(require_install))
install.packages(require_install)
suppressPackageStartupMessages({
library(grid)
library(ggthemes)
library(ggplot2)
})
## -----------------------------------------------------------------------------
# custom theme function for ggplot2
customTheme <- function(base_size = 10, base_family = "helvetica") {
require(grid)
require(ggthemes)
(ggthemes::theme_foundation(base_size = base_size)
+ ggplot2::theme(plot.title = element_text(face = "bold",
size = rel(1.2), hjust = 0.5),
text = element_text(),
panel.background = element_rect(colour = NA),
plot.background = element_rect(colour = NA),
panel.border = element_rect(colour = NA),
axis.title = element_text(size = rel(1)),
axis.title.y = element_text(angle = 90, vjust = 2),
axis.title.x = element_text(vjust = -0.2),
axis.text = element_text(),
axis.line = element_line(colour = "black"),
axis.ticks = element_line(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.key = element_rect(colour = NA),
legend.position = "top",
legend.direction = "horizontal",
legend.key.size = unit(0.2, "cm"),
legend.spacing = unit(0, "cm"),
legend.title = element_text(face = "italic"),
plot.margin = unit(c(10, 5, 5, 5), "mm"),
strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
strip.text = element_text(face = "bold")))
}
## -----------------------------------------------------------------------------
sel_colors <- c("#1B9E77", "#D95F02", "#7570B3", "#E7298A", "mediumturquoise",
"#E6AB02", "darkmagenta", "#666666", "black", "darkolivegreen2")
i <- 1
j <- 2
ggplot2::ggplot(df_proj_noVupdate, aes(x = df_proj_noVupdate[, i],
y = df_proj_noVupdate[, j], col = tissue,
shape = species, fill = tissue)) +
xlab(paste("OSBF Dim", i)) + ylab(paste("OSBF Dim", j)) +
geom_point(size = 1.5) + scale_color_manual(values = sel_colors) +
scale_shape_manual(values = c(21:25, 3:7)) +
scale_fill_manual(values = sel_colors) +
customTheme() +
theme(legend.title = element_blank())
## -----------------------------------------------------------------------------
# 2D plot for Dim1 and Dim2 [With V update]
i <- 1
j <- 2
ggplot2::ggplot(df_proj, aes(x = df_proj[, i],
y = df_proj[, j], col = tissue,
shape = species, fill = tissue)) +
xlab(paste("OSBF Dim", i)) + ylab(paste("OSBF Dim", j)) +
geom_point(size = 1.5) + scale_color_manual(values = sel_colors) +
scale_shape_manual(values = c(21:25, 3:7)) +
scale_fill_manual(values = sel_colors) +
customTheme() +
theme(legend.title = element_blank())
## -----------------------------------------------------------------------------
# 2D plot for Dim2 and Dim3 [No V update]
i <- 2
j <- 3
ggplot2::ggplot(df_proj_noVupdate, aes(x = df_proj_noVupdate[, i],
y = df_proj_noVupdate[, j], col = tissue,
shape = species, fill = tissue)) +
xlab(paste("OSBF Dim", i)) + ylab(paste("OSBF Dim", j)) +
geom_point(size = 1.5) + scale_color_manual(values = sel_colors) +
scale_shape_manual(values = c(21:25, 3:7)) +
scale_fill_manual(values = sel_colors) +
customTheme() +
theme(legend.title = element_blank())
## -----------------------------------------------------------------------------
# 2D plot for Dim2 and Dim3 [With V update]
i <- 2
j <- 3
ggplot2::ggplot(df_proj, aes(x = df_proj[, i], y = df_proj[, j], col = tissue,
shape = species, fill = tissue)) +
xlab(paste("OSBF Dim", i)) + ylab(paste("OSBF Dim", j)) +
geom_point(size = 1.5) + scale_color_manual(values = sel_colors) +
scale_shape_manual(values = c(21:25, 3:7)) +
scale_fill_manual(values = sel_colors) +
customTheme() +
theme(legend.title = element_blank())
## -----------------------------------------------------------------------------
finished <- c()
for (i in 1:(ncol(df_proj) - 2)) {
for (j in 1:(ncol(df_proj) - 2)) {
if (i == j) next
if (j %in% finished) next
ggplot(df_proj, aes(x = df_proj[, i], y = df_proj[, j], col = tissue,
shape = species, fill = tissue)) +
xlab(paste0("OSBF Dim ", i)) +
ylab(paste0("OSBF Dim ", j)) +
geom_point(size = 1.5) +
scale_color_manual(values = sel_colors) +
scale_shape_manual(values = c(21:25, 3:7)) +
scale_fill_manual(values = sel_colors) +
customTheme(base_size = 12) +
theme(legend.title = element_blank())
#ggsave(filename = paste0(outdir, "2Dplots/opt_2Dplot_Dim_", i, "-", j, "_",
# outputname, ".pdf"), device = "pdf",
# width = 7, height = 7, useDingbats = FALSE)
}
finished <- c(finished, i)
}
## -----------------------------------------------------------------------------
# install packages
pkgs <- c("RColorBrewer")
require_install <- pkgs[!(pkgs %in% row.names(installed.packages()))]
if (length(require_install))
install.packages(require_install)
pkgs <- c("ComplexHeatmap")
require_install <- pkgs[!(pkgs %in% row.names(installed.packages()))]
if (length(require_install)) {
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ComplexHeatmap")
}
suppressPackageStartupMessages({
library(ComplexHeatmap)
library(RColorBrewer)
})
## -----------------------------------------------------------------------------
data <- df_proj
data$tissue <- NULL
data$species <- NULL
data <- as.matrix(data)
data_dist <- as.matrix(dist(data, method = "euclidean"))
meta <- data.table::tstrsplit(colnames(data_dist), "_")
ht <- ComplexHeatmap::HeatmapAnnotation(celltype = meta[[3]], species = meta[[2]],
col = list(species = c("hsapiens" = "#66C2A5",
"mmusculus" = "#E78AC3"),
celltype = c("bcell" = "#1B9E77",
"cd14monocytes" = "#D95F02",
"cd4tcell" = "#7570B3",
"cd8tcell" = "#E7298A",
"clp" = "mediumturquoise",
"cmp" = "#E6AB02",
"eosinophil" = "darkmagenta",
"hsc" = "#666666",
"neutrophil" = "black",
"nkcell" = "darkolivegreen2")),
annotation_name_side = "left")
mypalette <- RColorBrewer::brewer.pal(9, "Blues")
morecolors <- colorRampPalette(mypalette)
myheatmap <- ComplexHeatmap::Heatmap(as.matrix(data_dist), cluster_rows = TRUE,
clustering_method_rows = "centroid",
cluster_columns = TRUE,
clustering_method_columns = "centroid",
top_annotation = ht, col = morecolors(50),
show_row_names = FALSE, show_column_names = FALSE,
name = "distance")
myheatmap
## -----------------------------------------------------------------------------
# 2D plot for Dim2 and Dim3 [With V update]
i <- 4
j <- 7
ggplot2::ggplot(df_proj, aes(x = df_proj[, i], y = df_proj[, j], col = tissue,
shape = species, fill = tissue)) +
xlab(paste("OSBF Dim", i)) + ylab(paste("OSBF Dim", j)) +
geom_point(size = 1.5) + scale_color_manual(values = sel_colors) +
scale_shape_manual(values = c(21:25, 3:7)) +
scale_fill_manual(values = sel_colors) +
customTheme() +
theme(legend.title = element_blank())
## -----------------------------------------------------------------------------
# function to compute Tau
calc_tissue_specificity <- function(a) {
a <- as.matrix(a)
b <- a / matrixStats::rowMaxs(a)
return(rowSums(1 - b) / (ncol(b) - 1))
}
Tau <- lapply(avg_counts, function(x) { calc_tissue_specificity(x)})
avg_counts_scaled <- lapply(avg_counts, function(x) { t(scale(t(x)))})
combine_expr <- list()
for (sp in names(avg_counts_scaled)) {
x <- as.data.frame(avg_counts_scaled[[sp]])
x[["Tau"]] <- Tau[[sp]]
combine_expr[[sp]] <- x
}
## -----------------------------------------------------------------------------
sel_dim <- 4
sel_tissue <- "bcell"
species <- "Homo_sapiens"
expr <- combine_expr[[species]]
osbf_coef <- osbf$u[[species]]
expr[["coef"]] <- osbf_coef[, sel_dim, drop = TRUE]
expr1 <- expr[, c(paste0(getSpeciesShortName(species), "_", sel_tissue),
"Tau", "coef")]
colnames(expr1) <- c("tissue_zscore", "Tau", "coef")
head(expr1)
## -----------------------------------------------------------------------------
# plot scatter
mid <- 0
p1 <- ggplot2::ggplot(expr1, aes(x = Tau, y = coef, col = tissue_zscore)) +
theme_bw() +
geom_point(size = 0.5) + xlab("Expression specificity") +
ylab(paste0("Dim", sel_dim, " Coefficient")) +
scale_color_gradient2(midpoint = mid, low = "blue", mid = "white",
high = "red", space = "Lab") +
scale_y_continuous(limits = c(-1 * max(abs(expr1$coef)),
max(abs(expr1$coef))),
breaks = seq(-1 * round(max(abs(expr$coef)), 2),
round(max(abs(expr$coef)), 2), by = 0.01)) +
customTheme() + theme(legend.position = "right",
legend.direction = "vertical") +
labs(title = getScientificName(species), color = "Z-score") +
theme(legend.key.size = unit(0.5, "cm"),
plot.title = element_text(face = "italic"))
p1
## -----------------------------------------------------------------------------
sel_dim <- 7
sel_tissue <- "nkcell"
species <- "Homo_sapiens"
expr <- combine_expr[[species]]
osbf_coef <- osbf$u[[species]]
expr[["coef"]] <- osbf_coef[, sel_dim, drop = TRUE]
expr1 <- expr[, c(paste0(getSpeciesShortName(species), "_", sel_tissue),
"Tau", "coef")]
colnames(expr1) <- c("tissue_zscore", "Tau", "coef")
# plot scatter
mid <- 0
p1 <- ggplot2::ggplot(expr1, aes(x = Tau, y = coef, col = tissue_zscore)) +
theme_bw() +
geom_point(size = 0.5) + xlab("Expression specificity") +
ylab(paste0("Dim", sel_dim, " Coefficient")) +
scale_color_gradient2(midpoint = mid, low = "blue", mid = "white",
high = "red", space = "Lab") +
scale_y_continuous(limits = c(-1 * max(abs(expr1$coef)),
max(abs(expr1$coef))),
breaks = seq(-1 * round(max(abs(expr$coef)), 2),
round(max(abs(expr$coef)), 2), by = 0.01)) +
customTheme() + theme(legend.position = "right",
legend.direction = "vertical") +
labs(title = getScientificName(species), color = "Z-score") +
theme(legend.key.size = unit(0.5, "cm"),
plot.title = element_text(face = "italic"))
p1
## -----------------------------------------------------------------------------
# install packages
pkgs <- c("goseq")
require_install <- pkgs[!(pkgs %in% row.names(installed.packages()))]
if (length(require_install)) {
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("goseq")
}
suppressPackageStartupMessages({
library(goseq)
})
## -----------------------------------------------------------------------------
sel_dim <- 4
sel_tissue <- "bcell"
top_genes <- 100
# axis positive (pos) or negative (neg)
sel_sign <- "pos"
## -----------------------------------------------------------------------------
species <- "Homo_sapiens"
expr <- combine_expr[[species]]
osbf_coef <- osbf$u[[species]]
expr[["coef"]] <- osbf_coef[, sel_dim, drop = TRUE]
expr1 <- expr[, c(paste0(getSpeciesShortName(species), "_", sel_tissue),
"Tau", "coef")]
colnames(expr1) <- c("tissue_zscore", "Tau", "coef")
if (sel_sign == "neg") {
cat("\n selecting negative loadings")
expr1_selsign <- expr1[expr1$coef < 0, ]
expr1_bgsign <- expr1[expr1$coef >= 0, ]
} else {
cat("\n selecting positive loadings")
expr1_selsign <- expr1[expr1$coef >= 0, ]
expr1_bgsign <- expr1[expr1$coef < 0, ]
}
expr1_selsign$score <- expr1_selsign$Tau * abs(expr1_selsign$coef)
expr1_selsign$rank <- rank(-1 * expr1_selsign$score)
expr1_selsign <- expr1_selsign[order(expr1_selsign$rank), ]
# gene list of interest
genes_fg <- row.names(expr1_selsign[expr1_selsign$rank <= top_genes, ])
# background genes
# For GO analysis, we will use genes with opposite sign loadings as
# the background.
genes_bg <- row.names(expr1_bgsign)
genes_bg <- genes_bg[!genes_bg %in% genes_fg]
genome <- "hg38"
total_genes <- unique(c(genes_fg, genes_bg))
up_genes <- as.integer(total_genes %in% genes_fg)
names(up_genes) <- total_genes
## ---- echo = FALSE, warning = FALSE-------------------------------------------
# set the path to the working directory. Change this accordingly
path <- "~/Dropbox/0.Analysis/0.paper/"
# load("hg38 length data")
load(paste0(path, "GOKeggFiles/hg38_length.EnsemblV94.RData"))
lengthData.up <- lengthData[names(up_genes)]
# load("hg38 EnsembleID to GO data")
load(paste0(path, "GOKeggFiles/hg38_geneID2GO.EnsemblID2GO.EnsembleV94.Robj"))
pwf <- goseq::nullp(up_genes, bias.data = lengthData.up, plot.fit = FALSE)
go <- goseq::goseq(pwf, "hg38", "ensGene", gene2cat = geneID2GO,
test.cats = c("GO:BP"))
go.sub <- go[go$ontology == "BP", ]
go.sub$padj <- p.adjust(go.sub$over_represented_pvalue, method = "BH")
go.sub[["ratio"]] <- round(go.sub[["numDEInCat"]] / go.sub[["numInCat"]], 4)
go.sub <- go.sub[with(go.sub, order(padj, decreasing = c(FALSE))), ]
go.sub$over_represented_pvalue <- NULL
go.sub$under_represented_pvalue <- NULL
## -----------------------------------------------------------------------------
head(go.sub)
## -----------------------------------------------------------------------------
# GO enrichment plot for human
go_out <- head(go.sub, n = 8)
go_out$padj <- as.numeric(go_out$padj)
go_out$term <- factor(go_out$term, levels = go_out$term)
breaks <- round(c(0, 1 / 4, 2 / 4, 3 / 4, 1) * max(go_out[["ratio"]]), 2)
go_plot <- ggplot2::ggplot(go_out, aes(x = term, y = ratio, fill = padj)) +
geom_col() +
scale_y_continuous(expand = c(0, 0), breaks = breaks,
limits = c(0, max(go_out[["ratio"]] + 0.05))) +
scale_x_discrete() + coord_flip() +
scale_color_gradient(low = "blue", high = "red") +
ylab(paste0("Ratio of genes in GO category (", species, ")")) +
xlab("") + customTheme() + theme(legend.position = "right",
legend.direction = "vertical",
plot.margin = unit(c(10, 5, 5, 5), "mm"))
go_plot
## -----------------------------------------------------------------------------
sel_dim <- 7
sel_tissue <- "nkcell"
top_genes <- 100
# axis positive (pos) or negative (neg)
sel_sign <- "pos"
species <- "Homo_sapiens"
expr <- combine_expr[[species]]
osbf_coef <- osbf$u[[species]]
expr[["coef"]] <- osbf_coef[, sel_dim, drop = TRUE]
expr1 <- expr[, c(paste0(getSpeciesShortName(species), "_", sel_tissue),
"Tau", "coef")]
colnames(expr1) <- c("tissue_zscore", "Tau", "coef")
if (sel_sign == "neg") {
cat("\n selecting negative loadings")
expr1_selsign <- expr1[expr1$coef < 0, ]
expr1_bgsign <- expr1[expr1$coef >= 0, ]
} else {
cat("\n selecting positive loadings")
expr1_selsign <- expr1[expr1$coef >= 0, ]
expr1_bgsign <- expr1[expr1$coef < 0, ]
}
expr1_selsign$score <- expr1_selsign$Tau * abs(expr1_selsign$coef)
expr1_selsign$rank <- rank(-1 * expr1_selsign$score)
expr1_selsign <- expr1_selsign[order(expr1_selsign$rank), ]
# gene list of interest
genes_fg <- row.names(expr1_selsign[expr1_selsign$rank <= top_genes, ])
# background genes
# For GO analysis, we will use genes with opposite sign loadings as
# the background.
genes_bg <- row.names(expr1_bgsign)
genes_bg <- genes_bg[!genes_bg %in% genes_fg]
genome <- "hg38"
total_genes <- unique(c(genes_fg, genes_bg))
up_genes <- as.integer(total_genes %in% genes_fg)
names(up_genes) <- total_genes
## ---- echo = FALSE, warning = FALSE-------------------------------------------
# set the path to the working directory. Change this accordingly
path <- "~/Dropbox/0.Analysis/0.paper/"
# load("hg38 length data")
load(paste0(path, "GOKeggFiles/hg38_length.EnsemblV94.RData"))
lengthData.up <- lengthData[names(up_genes)]
# load("hg38 EnsembleID to GO data")
load(paste0(path, "GOKeggFiles/hg38_geneID2GO.EnsemblID2GO.EnsembleV94.Robj"))
pwf <- goseq::nullp(up_genes, bias.data = lengthData.up, plot.fit = FALSE)
go <- goseq::goseq(pwf, "hg38", "ensGene", gene2cat = geneID2GO,
test.cats = c("GO:BP"))
go.sub <- go[go$ontology == "BP", ]
go.sub$padj <- p.adjust(go.sub$over_represented_pvalue, method = "BH")
go.sub[["ratio"]] <- round(go.sub[["numDEInCat"]] / go.sub[["numInCat"]], 4)
go.sub <- go.sub[with(go.sub, order(padj, decreasing = c(FALSE))), ]
go.sub$over_represented_pvalue <- NULL
go.sub$under_represented_pvalue <- NULL
## -----------------------------------------------------------------------------
head(go.sub)
## -----------------------------------------------------------------------------
# GO enrichment plot for human
go_out <- head(go.sub, n = 8)
go_out$padj <- as.numeric(go_out$padj)
go_out$term <- factor(go_out$term, levels = go_out$term)
breaks <- round(c(0, 1 / 4, 2 / 4, 3 / 4, 1) * max(go_out[["ratio"]]), 2)
go_plot <- ggplot2::ggplot(go_out, aes(x = term, y = ratio, fill = padj)) +
geom_col() +
scale_y_continuous(expand = c(0, 0), breaks = breaks,
limits = c(0, max(go_out[["ratio"]] + 0.05))) +
scale_x_discrete() + coord_flip() +
scale_color_gradient(low = "blue", high = "red") +
ylab(paste0("Ratio of genes in GO category (", species, ")")) +
xlab("") + customTheme() + theme(legend.position = "right",
legend.direction = "vertical",
plot.margin = unit(c(10, 5, 5, 5), "mm"))
go_plot
## -----------------------------------------------------------------------------
# set seed
s1 <- 32
s2 <- 135
species <- c("Homo_sapiens", "Mus_musculus")
species_short <- sapply(species, getSpeciesShortName)
# set the path to the working directory. Change this accordingly
path <- "~/Dropbox/0.Analysis/0.paper/"
counts_list_shuff <- metadata_list_shuff <- avg_counts_shuff <- list()
for (sp in species) {
# reading raw counts
counts <- read.table(paste0(path, "human_mouse_blood_counts/", sp,
"_blood_rawcounts.tsv"), header = TRUE,
sep = "\t", row.names = 1)
info <- data.table::tstrsplit(colnames(counts), "_")
metadata <- data.frame(project = info[[1]],
species = info[[2]],
tissue = info[[3]],
gsm = info[[4]],
name = colnames(counts),
stringsAsFactors = FALSE)
metadata$ref <- seq_len(nrow(metadata))
metadata$key <- paste0(metadata$species, "_", metadata$tissue)
metadata$tissue_factor <- factor(metadata$tissue)
counts_avg <- calcAvgCounts(counts, metadata)
cnames <- colnames(counts_avg)
rnames <- row.names(counts_avg)
set.seed(s1)
counts_avg <- as.data.frame(apply(counts_avg, 2, sample))
set.seed(s2)
counts_avg <- as.data.frame(t(apply(counts_avg, 1, sample)))
colnames(counts_avg) <- cnames
row.names(counts_avg) <- rnames
# normalize the shuffled counts to log TPM
# set the path to the working directory. Change this accordingly
path <- "~/Dropbox/0.Analysis/0.paper/"
gene_length <- read.table(paste0(path, "ensembl94_annotation/", sp,
"_genelength.tsv"), sep = "\t",
header = TRUE, row.names = 1,
stringsAsFactors = FALSE)
if (!all(row.names(counts_avg) %in% row.names(gene_length))) stop("Error")
gene_length$Length <- gene_length$Length / 1e3
gene_length <- gene_length[row.names(counts_avg), , drop = TRUE]
names(gene_length) <- row.names(counts_avg)
counts_tpm <- normalizeTPM(rawCounts = counts_avg, gene_len = gene_length)
min_tpm <- 1
counts_tpm[counts_tpm < min_tpm] <- 1
counts_tpm <- log2(counts_tpm)
info <- data.table::tstrsplit(colnames(counts_tpm), "_")
metadata <- data.frame(
species = info[[1]],
tissue = info[[2]],
name = colnames(counts_tpm),
stringsAsFactors = FALSE)
metadata$key <- paste0(metadata$species, "_", metadata$tissue)
avg_counts_shuff[[sp]] <- calcAvgCounts(counts_tpm, metadata)
counts_list_shuff[[sp]] <- counts_tpm
metadata_list_shuff[[sp]] <- metadata
}
# dims
sapply(counts_list_shuff, dim)
# remove zero counts
avg_counts_shuff <- lapply(avg_counts_shuff, removeZeros)
sapply(avg_counts_shuff, dim)
## -----------------------------------------------------------------------------
cat(format(Sys.time(), "%a %b %d %X %Y"), "\n")
osbf_shuf <- SBF(avg_counts_shuff, transform_matrix = TRUE, orthogonal = TRUE,
tol = 1e-2)
cat(format(Sys.time(), "%a %b %d %X %Y"), "\n")
osbf_shuf$error
## -----------------------------------------------------------------------------
Tau_null <- lapply(avg_counts_shuff, function(x) {calc_tissue_specificity(x)})
avg_counts_shuff_scaled <- lapply(avg_counts_shuff, function(x) {
t(scale(t(x)))
})
combine_expr_null <- list()
for (sp in names(avg_counts_shuff_scaled)) {
x <- as.data.frame(avg_counts_shuff_scaled[[sp]])
x[["Tau"]] <- Tau_null[[sp]]
combine_expr_null[[sp]] <- x
}
## -----------------------------------------------------------------------------
sel_dim <- 4
sel_tissue <- "bcell"
# axis positive (pos) or negative (neg)
sel_sign <- "pos"
species <- "Homo_sapiens"
species_short <- "hsapiens"
expr <- combine_expr[[species]]
osbf_coef <- osbf$u[[species]]
expr[["coef"]] <- osbf_coef[, sel_dim, drop = TRUE]
expr1 <- expr[, c(paste0(species_short, "_", sel_tissue),
"Tau", "coef")]
colnames(expr1) <- c("tissue_zscore", "Tau", "coef")
# null loadings for the same dimensions
expr_null <- combine_expr_null[[species]]
null_u <- osbf_shuf$u[[species]]
expr_null[["coef"]] <- null_u[, sel_dim, drop = TRUE]
expr1_null <- expr_null[, c(paste0(species_short, "_", sel_tissue), "Tau",
"coef")]
if (sel_sign == "pos") {
expr1 <- expr1[expr1$coef >= 0, ]
expr1_null <- expr1_null[expr1_null$coef >= 0, ]
} else if (sel_dim == "neg") {
expr1 <- expr1[expr1$coef < 0, ]
expr1_null <- expr1_null[expr1_null$coef < 0, ]
}
expr1$score <- expr1$Tau * abs(expr1$coef)
expr1$rank <- rank(-1 * expr1$score)
expr1 <- expr1[order(expr1$rank), ]
expr1_null$score <- expr1_null$Tau * abs(expr1_null$coef)
expr1$pvalue <- sapply(expr1$score, function(x) {
sum(as.integer(expr1_null$score > x)) / length(expr1_null$score)
})
head(expr1)
## -----------------------------------------------------------------------------
# cut off for the p-value
alpha <- 1e-3
summary(expr1$pvalue <= alpha)
## -----------------------------------------------------------------------------
# set the path to the working directory. Change this accordingly
path <- "~/Dropbox/0.Analysis/0.paper/"
gene_info <- read.table(paste0(path, "ensembl94_annotation/", species_short,
"_genes_completeinfo.tsv"),
sep = "\t", header = TRUE, quote = "\"")
gene_info <- gene_info[!duplicated(gene_info$ensembl_gene_id), ]
gene_info <- gene_info[gene_info$ensembl_gene_id %in% row.names(expr1), ]
row.names(gene_info) <- gene_info$ensembl_gene_id
gene_info <- gene_info[row.names(expr1), ]
expr1$gene_name <- gene_info$external_gene_name
expr1$biotype <- gene_info$gene_biotype
head(expr1, n = 10)
## -----------------------------------------------------------------------------
sel_dim <- 7
sel_tissue <- "nkcell"
# axis positive (pos) or negative (neg)
sel_sign <- "pos"
species <- "Mus_musculus"
species_short <- "mmusculus"
expr <- combine_expr[[species]]
osbf_coef <- osbf$u[[species]]
expr[["coef"]] <- osbf_coef[, sel_dim, drop = TRUE]
expr1 <- expr[, c(paste0(species_short, "_", sel_tissue),
"Tau", "coef")]
colnames(expr1) <- c("tissue_zscore", "Tau", "coef")
# null loadings for the same dimensions
expr_null <- combine_expr_null[[species]]
null_u <- osbf_shuf$u[[species]]
expr_null[["coef"]] <- null_u[, sel_dim, drop = TRUE]
expr1_null <- expr_null[, c(paste0(species_short, "_", sel_tissue), "Tau",
"coef")]
if (sel_sign == "pos") {
expr1 <- expr1[expr1$coef >= 0, ]
expr1_null <- expr1_null[expr1_null$coef >= 0, ]
} else if (sel_dim == "neg") {
expr1 <- expr1[expr1$coef < 0, ]
expr1_null <- expr1_null[expr1_null$coef < 0, ]
}
expr1$score <- expr1$Tau * abs(expr1$coef)
expr1$rank <- rank(-1 * expr1$score)
expr1 <- expr1[order(expr1$rank), ]
expr1_null$score <- expr1_null$Tau * abs(expr1_null$coef)
expr1$pvalue <- sapply(expr1$score, function(x) {
sum(as.integer(expr1_null$score > x)) / length(expr1_null$score)
})
## -----------------------------------------------------------------------------
# cut off for the p-value
alpha <- 1e-3
summary(expr1$pvalue <= alpha)
## -----------------------------------------------------------------------------
# set the path to the working directory. Change this accordingly
path <- "~/Dropbox/0.Analysis/0.paper/"
gene_info <- read.table(paste0(path, "ensembl94_annotation/", species_short,
"_genes_completeinfo.tsv"),
sep = "\t", header = TRUE, quote = "\"")
gene_info <- gene_info[!duplicated(gene_info$ensembl_gene_id), ]
gene_info <- gene_info[gene_info$ensembl_gene_id %in% row.names(expr1), ]
row.names(gene_info) <- gene_info$ensembl_gene_id
gene_info <- gene_info[row.names(expr1), ]
expr1$gene_name <- gene_info$external_gene_name
expr1$biotype <- gene_info$gene_biotype
head(expr1, n = 10)
## -----------------------------------------------------------------------------
sel_dim <- 1
species <- "Homo_sapiens"
expr <- combine_expr[[species]]
osbf_coef <- osbf$u[[species]]
expr[["coef"]] <- osbf_coef[, sel_dim, drop = TRUE]
# plot scatter
mid <- 0.5
p1 <- ggplot2::ggplot(expr, aes(x = Tau, y = coef, col = Tau)) +
theme_bw() +
geom_point(size = 0.5) + xlab("Expression specificity") +
ylab(paste0("Dim", sel_dim, " Coefficient")) +
scale_color_gradient2(midpoint = mid, low = "blue", mid = "white",
high = "red", space = "Lab") +
customTheme() + theme(legend.position = "right",
legend.direction = "vertical") +
labs(title = getScientificName(species), color = "Tau") +
theme(legend.key.size = unit(0.5, "cm"),
plot.title = element_text(face = "italic"))
p1
## -----------------------------------------------------------------------------
sel_dim <- 1
combine_expr_Dim1 <- list()
for (sp in names(combine_expr)) {
expr <- combine_expr[[sp]]
osbf_coef <- osbf$u[[sp]]
expr[["coef"]] <- osbf_coef[, sel_dim, drop = TRUE]
expr_null <- combine_expr_null[[sp]]
null_u <- osbf_shuf$u[[sp]]
expr_null[["coef"]] <- null_u[, sel_dim, drop = TRUE]
expr$score <- abs(expr$coef)
expr$rank <- rank(-1 * expr$score)
expr_null$score <- abs(expr_null$coef)
expr[[paste0("Dim", sel_dim, "_pval")]] <- sapply(expr$score, function(x) {
sum(as.integer(expr_null$score > x)) / length(expr_null$score)
})
combine_expr_Dim1[[sp]] <- expr
}
## -----------------------------------------------------------------------------
# cut off for the p-value
alpha <- 1e-3
sapply(combine_expr_Dim1, function(x) {summary(x$Dim1_pval <= alpha)})
## -----------------------------------------------------------------------------
# set the path to the working directory. Change this accordingly
path <- "~/Dropbox/0.Analysis/0.paper/"
# get human mouse orthologs
file <- "allwayOrthologs_hsapiens-mmusculus_ens94.tsv"
hm_orthologs <- read.table(paste0(path, "ensembl94_annotation/", file),
header = TRUE, sep = "\t")
Dim1_genes <- list()
for (sp in names(combine_expr_Dim1)) {
x <- combine_expr_Dim1[[sp]][combine_expr_Dim1[[sp]]$Dim1_pval <= alpha, ]
x <- x[order(x$rank), c("rank", "score", "Tau", "Dim1_pval"), drop = FALSE]
# get gene details
gene_info <- read.table(paste0(path, "ensembl94_annotation/",
getSpeciesShortName(sp),
"_genes_completeinfo.tsv"),
sep = "\t", header = TRUE, quote = "\"")
gene_info <- gene_info[!duplicated(gene_info$ensembl_gene_id), ]
gene_info <- gene_info[gene_info$ensembl_gene_id %in% row.names(x), ]
row.names(gene_info) <- gene_info$ensembl_gene_id
gene_info <- gene_info[row.names(x), ]
gene_info <- gene_info[, c("ensembl_gene_id", "external_gene_name",
"gene_biotype", "chromosome_name")]
colnames(gene_info) <- c("id", "gene_name", "biotype", "chr")
orthologs <- hm_orthologs[, getSpeciesShortName(sp), drop = TRUE]
ortholog_status <- rep(FALSE, nrow(x))
ortholog_status[row.names(x) %in% orthologs] <- TRUE
x$orthologs <- as.factor(ortholog_status)
df <- cbind(gene_info, x)
row.names(df) <- NULL
Dim1_genes[[sp]] <- df
}
## -----------------------------------------------------------------------------
head(Dim1_genes[["Homo_sapiens"]])
## -----------------------------------------------------------------------------
head(Dim1_genes[["Mus_musculus"]])
## -----------------------------------------------------------------------------
cnames <- c("Dim", "species", "nTotal", "nCoding", "nMt", "nOrthologs")
summary_stats <- data.frame(matrix(NA, nrow = 0, ncol = length(cnames)))
colnames(summary_stats) <- cnames
for (sp in names(Dim1_genes)) {
df <- Dim1_genes[[sp]]
stats <- data.frame(matrix(0L, nrow = 1, ncol = length(cnames)))
colnames(stats) <- cnames
stats$Dim <- "Dim1"
stats$species <- getSpeciesShortName(sp)
stats$nTotal <- nrow(df)
stats$nCoding <- round(nrow(df[df$biotype == "protein_coding",
, drop = FALSE]) * 100 / nrow(df), 2)
stats$nMt <- round(nrow(df[tolower(df$chr) == "mt",
, drop = FALSE]) * 100 / nrow(df), 2)
stats$nOrthologs <- round(nrow(df[df$orthologs == TRUE,
, drop = FALSE]) * 100 / nrow(df), 2)
summary_stats <- rbind(summary_stats, stats)
}
summary_stats
## -----------------------------------------------------------------------------
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.