identifyClusters: Identify cell clusters

Description Usage Arguments Value

View source: R/modeling.R

Description

Identify cell clusters

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
identifyClusters(
  object,
  mode = c("separate", "integrated"),
  resolution = NULL,
  method = c("matrix", "igraph"),
  algorithm = 4,
  resRange = NULL,
  nDims.consensus = 30,
  clustering.method = c("hierarchical", "community"),
  graph.name = NULL,
  ...
)

Arguments

object

a list of Seurat objects or a single Seurat object

mode

"separate" or "integrated"; "separate" means performing clustering for each dataset separately, and "integrated" means performing clustering on the integrated data

resolution

the resolution in Leiden algorithm; if it is NULL, the optimal resoultion will be inferred based on eigen spectrum

method

Method for running leiden (defaults to matrix which is fast for small datasets). Enable method = "igraph" to avoid casting large data to a dense matrix.

algorithm

Algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm). Leiden requires the leidenalg python.

resRange

the range of resolution values in Leiden algorithm; if it is NULL, the default range of resoultion will be from 0.1 to 0.5

nDims.consensus

the number of singular values to estimate from the consensus matrix.

clustering.method

method for performing clustering on the consensus matrix from a range of resolutions

graph.name

Name of graph to use for the clustering algorithm

...

other parameter passing to FindClusters function in Seurat package

Value

a list of Seurat objects or a single Seurat object


amsszlh/scMC documentation built on Jan. 2, 2021, 1:51 p.m.