identifyClusters_internal: identify cell clusters of a single Seurat object

Description Usage Arguments Value

View source: R/modeling.R

Description

identify cell clusters of a single Seurat object

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
identifyClusters_internal(
  object,
  resolution = NULL,
  method = "matrix",
  algorithm = 4,
  resRange = NULL,
  nDims.consensus = 30,
  clustering.method = c("hierarchical", "community"),
  graph.name = NULL,
  ...
)

Arguments

object

Seurat object

resolution

the resolution in Leiden algorithm; if it is NULL, the optimal resoultion will be inferred based on eigen spectrum

method

Method for running leiden (defaults to matrix which is fast for small datasets). Enable method = "igraph" to avoid casting large data to a dense matrix.

algorithm

Algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm). Leiden requires the leidenalg python.

resRange

the range of resolutions in Leiden algorithm; if it is NULL, the optimal range of resoultion will be from 0.1 to 0.5

nDims.consensus

the number of singular values to estimate from the consensus matrix.

clustering.method

method for performing clustering on the consensus matrix from a range of resolutions

graph.name

Name of graph to use for the clustering algorithm

...

other parameter passing to FindClusters function in Seurat package

Value

Seurat object


amsszlh/scMC documentation built on Jan. 2, 2021, 1:51 p.m.