Efficient implementation for clustering methylation profiles using the EM algorithm, given a design matrix H.
1 2 3 | bpr_EM_fast(x, H, K = 2, pi_k = rep(1/K, K), w = NULL,
em_max_iter = 100, epsilon_conv = 1e-05, lambda = 1/2,
opt_method = "CG", opt_itnmax = 100, is_verbose = FALSE)
|
x |
Observations, stored in a list object. |
H |
The design matrix H |
K |
Integer denoting the number of clusters K. |
pi_k |
Vector of length K, denoting the mixing proportions. |
w |
A MxK matrix, where each column consists of the basis function coefficients for each corresponding cluster. |
em_max_iter |
Integer denoting the maximum number of EM iterations. |
epsilon_conv |
Numeric denoting the convergence parameter for EM. |
lambda |
The complexity penalty coefficient for ridge regression. |
opt_method |
The optimization method to be used. See
|
opt_itnmax |
Optional argument giving the maximum number of iterations
for the corresponding method. See |
is_verbose |
Logical, print results during EM iterations. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.