Description Usage Arguments Value See Also Examples
bpr_bayes_predict_wrap
is a function that wraps all the necessary
subroutines for performing predictions on gene expressions. Initially, it
computes the posterior distribution, using Gibbs sampling, of the parameters
of the basis functions so as to learn the methylation profiles. Then uses the
learned parameters / coefficients of the basis functions as input features
for performing linear regression in order to predict/regress the
corresponding gene expression data.
1 2 3 4 5 6 | bpr_bayes_predict_wrap(formula = NULL, x, y, model_name = "svm", w = NULL,
basis = NULL, train_ind = NULL, train_perc = 0.7,
fit_feature = "RMSE", cpg_dens_feat = TRUE, lambda = 1/2,
w_0_mean = NULL, w_0_cov = NULL, gibbs_nsim = 5000,
gibbs_burn_in = 1000, opt_method = "CG", opt_itnmax = 50,
is_parallel = TRUE, no_cores = NULL, is_summary = TRUE)
|
formula |
An object of class |
x |
The binomial distributed observations, which has to be a list where each element is an L x 3 dimensional matrix. |
y |
Corresponding gene expression data for each element of the list x |
model_name |
A charcter denoting the regression model. |
w |
Optional vector of initial parameter / coefficient values. |
basis |
Optional basis function object, default is
|
train_ind |
Optional vector containing the indices for the train set. |
train_perc |
Optional parameter for defining the percentage of the dataset to be used for training set, the remaining will be the test set. |
fit_feature |
Additional feature on how well the profile fits the methylation data. |
cpg_dens_feat |
Additional feature for the CpG density across the promoter region. |
lambda |
The complexity penalty coefficient for penalized regression. |
w_0_mean |
The prior mean hyperparameter for w |
w_0_cov |
The prior covariance hyperparameter for w |
gibbs_nsim |
Optional argument giving the number of simulations of the Gibbs sampler. |
gibbs_burn_in |
Optional argument giving the burn in period of the Gibbs sampler. |
opt_method |
Parameter for defining the method to be used in the
optimization procedure, see |
opt_itnmax |
Optional parameter for defining the max number of
iterations of the optimization procedure, see |
is_parallel |
Logical, indicating if code should be run in parallel. |
no_cores |
Number of cores to be used, default is max_no_cores - 1. |
is_summary |
Logical, print the summary statistics. |
An mpgex object consisting of the following elements:
1 2 3 4 5 6 | obs <- meth_data
y <- gex_data
basis <- create_rbf_object(M = 5)
out <- bpr_bayes_predict_wrap(x = obs, y = y, basis = basis,
is_parallel = FALSE,
gibbs_nsim = 20, gibbs_burn_in = 10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.