bpr_bayes: Gibbs sampling approach for the BPR model

Description Usage Arguments Value Author(s) See Also Examples

Description

The function bpr_bayes computes the posterior of the BPR model using auxiliary variable approach. Since we cannot compute the posterior analytically, a Gibbs sampling scheme is used.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
bpr_bayes(x, ...)

## S3 method for class 'list'
bpr_bayes(x, w_mle = NULL, basis = NULL,
  fit_feature = NULL, cpg_dens_feat = FALSE, w_0_mean = NULL,
  w_0_cov = NULL, gibbs_nsim = 20, gibbs_burn_in = 10,
  keep_gibbs_draws = FALSE, is_parallel = TRUE, no_cores = NULL, ...)

## S3 method for class 'matrix'
bpr_bayes(x, w_mle = NULL, basis = NULL,
  fit_feature = NULL, cpg_dens_feat = FALSE, w_0_mean = NULL,
  w_0_cov = NULL, gibbs_nsim = 20, gibbs_burn_in = 10,
  keep_gibbs_draws = FALSE, ...)

Arguments

x

The input object, either a matrix or a list.

...

Additional parameters.

w_mle

A vector of parameters (i.e. coefficients of the basis functions) containing the MLE estimates.

basis

A 'basis' object. E.g. see create_rbf_object.

fit_feature

Return additional feature on how well the profile fits the methylation data. Either NULL for ignoring this feature or one of the following: 1) "RMSE" for returning the fit of the profile using the RMSE as measure of error or 2) "NLL" for returning the fit of the profile using the Negative Log Likelihood as measure of error.

cpg_dens_feat

Logical, whether to return an additional feature for the CpG density across the promoter region.

w_0_mean

The prior mean hyperparameter for w

w_0_cov

The prior covariance hyperparameter for w

gibbs_nsim

Optional argument giving the number of simulations of the Gibbs sampler.

gibbs_burn_in

Optional argument giving the burn in period of the Gibbs sampler.

keep_gibbs_draws

Logical indicating if we should keep the whole MCMC chain for further analysis.

is_parallel

Logical, indicating if code should be run in parallel.

no_cores

Number of cores to be used, default is max_no_cores - 2.

Value

Depending on the input object x:

Author(s)

C.A.Kapourani C.A.Kapourani@ed.ac.uk

See Also

create_basis, eval_functions

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
data <- meth_data
out_opt <- bpr_bayes(x = data, is_parallel = FALSE)

ex_data <- meth_data
basis <- create_rbf_object(M=3)
out_opt <- bpr_bayes(x = ex_data, is_parallel = FALSE, basis = basis)

basis <- create_rbf_object(M=2)
w <- c(0.1, 0.1, 0.1)
w_0_mean <- rep(0, length(w))
w_0_cov <- diag(10, length(w))
data <- meth_data[[1]]
out_opt <- bpr_bayes(x = data, w_mle = w, w_0_mean = w_0_mean,
                     w_0_cov = w_0_cov, basis = basis)

basis <- create_rbf_object(M=0)
w <- c(0.1)
w_0_mean <- rep(0, length(w))
w_0_cov <- diag(10, length(w))
data <- meth_data[[1]]
out_opt <- bpr_bayes(x = data, w_mle = w, w_0_mean = w_0_mean,
                     w_0_cov = w_0_cov, basis = basis)

andreaskapou/BPRMeth-devel documentation built on May 12, 2019, 3:32 a.m.