#' Stepwise logistic regression based on risk profile concept
#'
#' \code{stepRPC} customized stepwise regression with p-value and trend check which additionally takes into account
#' the order of supplied risk factors per group when selects a candidate for the final regression model. Trend check is performed
#' comparing observed trend between target and analyzed risk factor and trend of the estimated coefficients within the
#' logistic regression. Note that procedure checks the column names of supplied \code{db} data frame therefore some
#' renaming (replacement of special characters) is possible to happen. For details, please, check the help example.
#'@param start.model Formula class that represents the starting model. It can include some risk factors, but it can be
#' defined only with intercept (\code{y ~ 1} where \code{y} is target variable).
#'@param risk.profile Data frame with defined risk profile. It has to contain the following columns: \code{rf} and
#' \code{group}. Column \code{group} defines order of groups that will be tested first as a candidate
#' for the regression model. Risk factors selected in each group are kept as a starting variables
#' for the next group testing. Column \code{rf} contains all candidate risk factors supplied for testing.
#'@param p.value Significance level of p-value of the estimated coefficients. For \code{WoE} coding this value is
#' is directly compared to the p-value of the estimated coefficients, while for \code{dummy} coding
#' multiple Wald test is employed and its value is used for comparison with selected threshold (\code{p.value}).
#'@param coding Type of risk factor coding within the model. Available options are: \code{"WoE"} and
#' \code{"dummy"}. If \code{"WoE"} is selected, then modalities of the risk factors are replaced
#' by WoE values, while for \code{"dummy"} option dummies (0/1) will be created for \code{n-1}
#' modalities where \code{n} is total number of modalities of analyzed risk factor.
#'@param coding.start.model Logical (\code{TRUE} or \code{FALSE}), if the risk factors from the starting model should be WoE coded.
#' It will have an impact only for WoE coding option.
#'@param check.start.model Logical (\code{TRUE} or \code{FALSE}), if risk factors from the starting model should
#' checked for p-value and trend in stepwise process.
#'@param db Modeling data with risk factors and target variable. All risk factors (apart from the risk factors from the starting model)
#' should be categorized and as of character type.
#'@param offset.vals This can be used to specify an a priori known component to be included in the linear predictor during fitting.
#' This should be \code{NULL} or a numeric vector of length equal to the number of cases. Default is \code{NULL}.
#'@return The command \code{stepRPC} returns a list of four objects.\cr
#' The first object (\code{model}), is the final model, an object of class inheriting from \code{"glm"}.\cr
#' The second object (\code{steps}), is the data frame with risk factors selected at each iteration.\cr
#' The third object (\code{warnings}), is the data frame with warnings if any observed.
#' The warnings refer to the following checks: if risk factor has more than 10 modalities,
#' if any of the bins (groups) has less than 5% of observations and
#' if there are problems with WoE calculations.\cr
#' The final, fourth, object \code{dev.db} returns the model development database.
#'@examples
#'suppressMessages(library(PDtoolkit))
#'data(loans)
#'#identify numeric risk factors
#'num.rf <- sapply(loans, is.numeric)
#'num.rf <- names(num.rf)[!names(num.rf)%in%"Creditability" & num.rf]
#'#discretized numeric risk factors using ndr.bin from monobin package
#'loans[, num.rf] <- sapply(num.rf, function(x)
#' ndr.bin(x = loans[, x], y = loans[, "Creditability"])[[2]])
#'str(loans)
#'#create risk factor priority groups
#'rf.all <- names(loans)[-1]
#'set.seed(591)
#'rf.pg <- data.frame(rf = rf.all, group = sample(1:3, length(rf.all), rep = TRUE))
#'head(rf.pg)
#'#bring AUC for each risk factor in order to sort them within groups
#'bva <- bivariate(db = loans, target = "Creditability")[[1]]
#'rf.auc <- unique(bva[, c("rf", "auc")])
#'rf.pg <- merge(rf.pg, rf.auc, by = "rf", all.x = TRUE)
#'#prioritized risk factors
#'rf.pg <- rf.pg[order(rf.pg$group, rf.pg$auc), ]
#'rf.pg <- rf.pg[order(rf.pg$group), ]
#'rf.pg
#'res <- stepRPC(start.model = Creditability ~ 1,
#' risk.profile = rf.pg,
#' p.value = 0.05,
#' coding = "WoE",
#' db = loans)
#'summary(res$model)$coefficients
#'res$steps
#'head(res$dev.db)
#'@import monobin
#'@importFrom stats formula coef vcov
#'@export
stepRPC <- function(start.model, risk.profile, p.value = 0.05, coding = "WoE", coding.start.model = TRUE,
check.start.model = TRUE, db, offset.vals = NULL) {
#check arguments
if (!is.data.frame(db)) {
stop("db is not a data frame.")
}
if (!all(c("rf", "group")%in%names(risk.profile))) {
stop("risk.profile data frame has to contain columns: rf and group.")
}
if (!all(risk.profile$rf%in%names(db))) {
rp.rf.miss <- risk.profile$rf[!risk.profile$rf%in%names(db)]
msg <- "Following risk factors from risk.profile are missing in supplied db: "
msg <- paste0(msg, paste0(rp.rf.miss, collapse = ", "), ".")
stop(msg)
}
if (any(is.na(risk.profile$group))) {
stop("Missing value(s) in risk.profile group.")
}
coding.opt <- c("WoE", "dummy")
if (!coding%in%coding.opt) {
stop(paste0("coding argument has to be one of: ", paste0(coding.opt, collapse = ', '), "."))
}
if ((!is.numeric(p.value) | !length(p.value) == 1) |
!(p.value[1] > 0 & p.value[1] < 1)) {
stop("p.value has to be of single numeric value vector greater than 0 and less then 1.")
}
if (!is.logical(coding.start.model)) {
stop("coding.start.model has to be logical (TRUE or FALSE).")
}
if (!is.logical(check.start.model)) {
stop("check.start.model has to be logical (TRUE or FALSE).")
}
if (check.start.model) {coding.start.model <- TRUE}
#extract model variables
start.vars <- all.vars(start.model)
target <- start.vars[1]
if (length(start.vars) > 1) {
rf.start <- start.vars[-1]
} else {
rf.start <- NULL
}
#check starting model formula
check <- any(!c(target, rf.start)%in%names(db))
if (check | is.na(target)) {
stop("Formula for start.model not specified correctly.
Check column names and if formula class is passed to start.model.")
}
#check target against 0/1
y <- db[, target]
if (!sum(y[!is.na(y)]%in%c(0, 1)) == length(y[!is.na(y)])) {
stop("Target is not 0/1 variable.")
}
rf.rest <- unique(risk.profile$rf)
#check supplied risk factors
rf.restl <- length(rf.rest)
if (rf.restl == 0) {
stop("Risk factors are missing. Check risk.profile argument.")
}
#correct names
names.c <- check.names(x = names(db))
names(db) <- unname(names.c[names(db)])
target <- unname(names.c[target])
if (!is.null(rf.start)) {rf.start <- unname(names.c[rf.start])}
rf.rest <- unname(names.c[rf.rest])
risk.profile$rf <- unname(names.c[risk.profile$rf])
#check coding, start model and rf.start types
if (check.start.model & coding%in%"dummy" & !is.null(rf.start)) {
num.type.start <- sapply(db[, rf.start, drop = FALSE], is.numeric)
if (any(num.type.start)) {check.start.model <- FALSE}
}
#define warning table
warn.tbl <- data.frame()
#check num of modalities per risk factor
unique.mod <- sapply(db[, rf.rest, drop = FALSE], function(x) length(unique(x)))
check.mod <- names(unique.mod)[unique.mod > 10]
if (length(check.mod) > 0) {
warn.rep <- data.frame(rf = check.mod, comment = "More than 10 modalities.")
warn.tbl <- bind_rows(warn.tbl, warn.rep)
}
#check for numeric risk factors (change the order of numeric check and num of modalities)
num.type <- sapply(db[, rf.rest, drop = FALSE], is.numeric)
check.num <- names(num.type)[num.type ]
if (length(check.num) > 0) {
msg <- "Numeric type. Risk factor is excluded from further process."
warn.rep <- data.frame(rf = check.num, comment = msg)
warn.tbl <- bind_rows(warn.tbl, warn.rep)
rf.rest <- rf.rest[!rf.rest%in%check.num]
rf.restl <- length(rf.rest)
}
#generate woe table
rf.a <- c(rf.start, rf.rest)
rf.al <- length(rf.a)
rf.woe.o <- vector("list", rf.al)
for (i in 1:rf.al) {
rf.a.l <- rf.a[i]
woe.o <- woe.tbl(tbl = db, x = rf.a.l, y = target, y.check = FALSE)
woe.o$bin <- as.character(woe.o$bin)
woe.o <- cbind.data.frame(rf = rf.a.l, woe.o)
pct.check <- any(woe.o$pct.o < 0.05)
woe.o$pct.check <- pct.check
woe.o$woe.check <- any(woe.o$woe%in%c(NA, NaN, Inf, -Inf))
rf.woe.o[[i]] <- woe.o
}
rf.woe.o <- bind_rows(rf.woe.o)
#check pct of obs per bin
check.pct <- unique(rf.woe.o$rf[rf.woe.o$pct.check])
if (length(check.pct) > 0) {
warn.rep <- data.frame(rf = check.pct, comment = "At least one pct per bin less than 5%.")
warn.tbl <- bind_rows(warn.tbl, warn.rep)
}
#check WoE calc
check.woe <- unique(rf.woe.o$rf[rf.woe.o$woe.check])
if (length(check.woe) > 0) {
msg <- "Problem with WoE calculation (NA, NaN, Inf, -Inf)."
msg <- paste0(msg, " Risk factor is excluded from further process.")
warn.rep <- data.frame(rf = check.woe, comment = msg)
warn.tbl <- bind_rows(warn.tbl, warn.rep)
rf.rest <- rf.rest[!rf.rest%in%check.woe]
}
#check coding and starting rf
if (coding.start.model) {
if (coding%in%"WoE" & length(rf.start) > 0) {
for (i in 1:length(rf.start)) {
rf.start.l <- rf.start[i]
woe.rep <- replace.woe(db = db[, c(target, rf.start.l)], target = target)
woe.rep.check <- woe.rep[[2]]
if (nrow(woe.rep.check) > 0) {
msg <- "Problem with the WoE calculations for the starting model.
Check the variable class and the following risk factors for NA or Inf values: "
msg <- paste0(msg, paste(woe.rep.check$rf, collapse = ", "), ".")
stop(msg)
}
db[, rf.start.l] <- woe.rep[[1]][, rf.start.l]
}
}
}
if (coding%in%"WoE") {
woe.o <- rf.woe.o[rf.woe.o$rf%in%rf.rest, ]
for (i in 1:length(rf.rest)) {
rf.rest.l <- rf.rest[i]
woe.o.l <- woe.o[woe.o$rf%in%rf.rest.l, ]
db[, rf.rest.l] <- replace.woe.aux(x = db[, rf.rest.l], woe.tbl = woe.o.l)
}
} else {
rf.woe.o$mf <- paste0(rf.woe.o$rf, rf.woe.o$bin)
}
#summarize rf groups for priority estimations
if (!is.null(offset.vals)) {
db <- cbind.data.frame(db, offset.vals = offset.vals)
}
rf.mod <- NULL
pg <- unique(risk.profile$group)
pgl <- length(pg)
#run stepwise per group
steps <- vector("list", pgl)
for (i in 1:pgl) {
pg.l <- group.summary(db = db,
target = target,
rp.tbl = risk.profile,
g = pg[i],
rf.mod = rf.mod,
rf.start = rf.start,
rf.rest = rf.rest,
p.value = p.value,
coding = coding,
coding.start.model = coding.start.model,
check.start.model = check.start.model,
rf.woe.o = rf.woe.o,
offset.vals = offset.vals)
steps[[i]] <- pg.l[["steps"]]
rf.mod <- pg.l[["rf.mod"]]
}
steps <- bind_rows(steps)
if (length(rf.mod) == 0) {rf.mod <- "1"}
frm.f <- paste0(target, " ~ ", paste0(c(rf.start, rf.mod), collapse = " + "))
if (is.null(offset.vals)) {
lr.mod <- glm(formula = as.formula(frm.f), family = "binomial", data = db)
} else {
lr.mod <- glm(formula = as.formula(frm.f), family = "binomial", data = db, offset = offset.vals)
}
res <- list(model = lr.mod,
steps = steps,
warnings = if (nrow(warn.tbl) > 0) {warn.tbl} else {data.frame(comment = "There are no warnings.")},
dev.db = db)
return(res)
}
#group summary
group.summary <- function(db, target, rp.tbl, g, rf.mod, rf.start, rf.rest, p.value, coding,
coding.start.model, check.start.model, rf.woe.o, offset.vals) {
rf.g <- rp.tbl$rf[rp.tbl$group%in%g]
rf.g <- rf.g[rf.g%in%rf.rest]
rf.mod <- c(rf.mod, rf.start)
steps <- data.frame()
if (length(rf.g) == 0) {
return(list(rf.mod = rf.mod, steps = steps))
}
#initialte rf table for stepwise
tbl.c <- data.frame(rf = rf.g, checked = FALSE)
iter <- 1
repeat {
message(paste0("Running iteration: ", iter, " for group: ", g))
it.s <- iter.summary(target = target,
rf.mod = rf.mod,
rf.start = rf.start,
check.start.model = check.start.model,
tbl.c = tbl.c,
p.value = p.value,
rf.woe.o = rf.woe.o,
coding = coding,
db = db,
offset.vals = offset.vals)
step.i <- find.next(it.s = it.s, tbl.c = tbl.c)
tbl.c <- step.i[["tbl.c"]]
rf.mod <- c(rf.mod, step.i[["rf.next"]])
steps <- bind_rows(steps, step.i[["step"]])
if (nrow(tbl.c) == 0 | all(tbl.c$checked)) {
break
}
iter <- iter + 1
}
if (nrow(steps) > 0) {
steps <- cbind.data.frame(group = g, steps)
}
return(list(rf.mod = rf.mod, steps = steps))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.