coarse2estim | R Documentation |
coarse2estim
Transforms outputs of
coarseDataTools::dic.fit.mcmc
to right format for input into
estimate_R
coarse2estim(x = NULL, dist = x@dist, samples = x@samples, thin = 10)
x |
An object generated by function
|
dist |
The parametric distribution used when estimating the serial
interval.
#' Should be one of "G" (Gamma), "W" (Weibull), "L" (Lognormal), "off1G"
(Gamma shifted by 1), "off1W" (Weibull shifted by 1), or "off1L" (Lognormal
shifted by 1). If not present, computed automatically from |
samples |
A dataframe containing the posterior samples of serial
interval parameters corresponding to the parametric choice specified in
|
thin |
A positive integer corresponding to thinning parameter; of the
posterior sample of serial interval distributions in x, only 1 in |
A list with two elements:
si_sample: a matrix where each column gives one distribution of the serial interval to be explored, obtained from x by thinning the MCMC chain.
si_parametric_distr: the parametric distribution used when estimating the serial interval stored in x.
The Hackout3 Parameter Estimation team.
estimate_R
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## load data on rotavirus
data("MockRotavirus")
## estimate the serial interval from data
SI.fit <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data,
dist = "G",
init.pars = init_mcmc_params(MockRotavirus$si_data, "G"),
burnin = 1000,
n.samples = 5000)
## use coarse2estim to turn this in the right format for estimate_R
si_sample <- coarse2estim(SI.fit, thin = 10)$si_sample
## use estimate_R to estimate the reproduction number
## based on these estimates of the serial interval
R_si_from_sample <- estimate_R(MockRotavirus$incidence,
method="si_from_sample",
si_sample=si_sample,
config = make_config(list(n2 = 50)))
plot(R_si_from_sample)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.