#' QC plots
#'
#' @param elist an EList
#'
#' @return Different QC Plots
#' @export
qc_plots <- function(elist) {
library("limma")
# boxplot----------------------------------------------------------------------
boxplot(elist$E, ylim = c(0, 20), ylab = "Data distribution\n with dark and bright corners (red)")
points(elist$E[elist$genes$ProbeName == "GE_BrightCorner", ], ylim = c(0, 20), pch = 24, bg = "red")
points(elist$E[elist$genes$ProbeName == "DarkCorner", ], ylim = c(0, 20), pch = 25, bg = "red")
# density plot-----------------------------------------------------------------
limma::plotDensities(elist$E, legend = F)
# Spike ins--------------------------------------------------------------------
data <- elist
x <- c(1:10)
plot(x, x, ylim = c(0, 20), type = "n", main = "Spike Ins")
spikes <- c("(+)E1A_r60_3", "(+)E1A_r60_a104", "(+)E1A_r60_a107", "(+)E1A_r60_a135", "(+)E1A_r60_a20", "(+)E1A_r60_a22", "(+)E1A_r60_a97", "(+)E1A_r60_n11", "(+)E1A_r60_n9", "(+)E1A_r60_1")
for (i in c(1:dim(data$targets)[1])) {
meds <- rep(NA, 10)
for (j in c(1:10)) {
meds[j] <- median(data$E[data$genes$ProbeName == spikes[j], i])
}
lines(x, meds, col = i)
}
abline(h = seq(0, 20, 0.5), lty = 3, lwd = 0.5)
# MDS plots--------------------------------------------------------------------
limma::plotMDS(elist$E, labels = elist$targets$names, col = as.numeric(as.factor(elist$targets$type)), main = "Cloess norm")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.