#' Title
#'
#' @param net
#'
#' @return
#' @export
#'
#' @examples
AllDataFile <- function(net) {
setwd(randRaw)
setwd(net)
metrics <-
c(
"minFrust",
"minFrustPhen",
"maxFrust",
"maxFrustPhen",
"meanFrust",
"meanNetFrust",
"minCoh",
"minCohPhen",
"maxCoh",
"maxCohPhen",
"meanCoh",
"meanNetCoh",
"minFreq",
"minFreqPhen",
"maxFreq",
"maxFreqPhen",
"meanFreq",
"corFreqFrust",
"pFreqFrust",
"corFreqCoh",
"pFreqCoh",
"corFreqStren",
"pFreqStren",
"corStrenCoh",
"pStrenCoh",
"corFrustCoh",
"pFrustCoh",
"corFrustStren",
"pFrustSren",
"bmSSF",
"bmCoh",
"bmFrust",
"hybridFreq",
"terminalFreq",
"nSS"
)
topoFiles <- list.files(".", ".topo$")
df <- lapply(topoFiles, function(topoFile) {
print(topoFile)
freqDf <-
read_csv(
str_replace(topoFile, ".topo", "_finFlagFreq.csv"),
col_types = cols(),
lazy = F
) %>%
filter(flag == 1)
if (nrow(freqDf) < 3)
return(rep(NA, 35))
frust <- freqDf$frust0
freq <- freqDf$Avg0
coh <- freqDf$coherence0
stren <- freqDf$Strength
if (is.null(coh)) {
print(topoFile)
freqDf <-
read_csv(
str_replace(topoFile, ".topo", "_finFlagFreq.csv"),
col_types = cols(),
lazy = F
)
d <- coherence(topoFile, write = F)
if (is.na(d)) {
freqDf$coherence0 <- NA
}
else {
d <-
d[d$init == d$fin, ] %>% mutate(states = init, coherence0 = Freq) %>%
select(states, coherence0)
coherenceVec <- d$coherence0
names(coherenceVec) <- d$states
freqDf$coherence0 <- coherenceVec[freqDf$states]
}
write_csv(
freqDf,
str_replace(topoFile, ".topo", "_finFlagFreq.csv"),
quote = "none",
na = ""
)
coh <- freqDf %>% filter(flag == 1) %>%
select(coherence0) %>% unlist
}
frustration <-
c(
frust %>% min(na.rm = T),
freqDf$Phenotype[which.min(frust)],
frust %>% max(na.rm = T),
freqDf$Phenotype[which.max(frust)],
frust %>% mean(na.rm = T),
sum(frust * freq, na.rm = T)
)
coherence <-
c(
coh %>% min(na.rm = T),
freqDf$Phenotype[which.min(coh)],
coh %>% max(na.rm = T),
freqDf$Phenotype[which.max(coh)],
coh %>% mean(na.rm = T),
sum(coh * freq, na.rm = T)
)
frequency <-
c(
freq %>% min(na.rm = T),
freqDf$Phenotype[which.min(freq)],
freq %>% max(na.rm = T),
freqDf$Phenotype[which.max(freq)],
freq %>% mean(na.rm = T)
)
cohFreq <-
cohFrust <- cohStren <- list(estimate = NA, p.value = NA)
if (!is.na(coh)) {
cohFreq <- cor.test(coh, log10(freq), method = "spearman")
cohFrust <- cor.test(coh, frust, method = "spearman")
cohStren <- cor.test(coh, stren, method = "spearman")
}
freqFrust <-
cor.test(log10(freq), frust, method = "spearman")
freqStren <-
cor.test(log10(freq), stren, method = "spearman")
frustStren <- cor.test(frust, stren, method = "spearman")
cors <- c(
freqFrust$estimate,
freqFrust$p.value,
cohFreq$estimate,
cohFreq$p.value,
freqStren$estimate,
freqStren$p.value,
cohStren$estimate,
cohStren$p.value,
cohFrust$estimate,
cohFrust$p.value,
frustStren$estimate,
frustStren$p.value
)
bimodalities <- c(
bimodality_coefficient(log10(freq)),
bimodality_coefficient(frust),
bimodality_coefficient(coh)
)
hybridFreq <-
freqDf %>% filter(Phenotype == "H") %>% select(Avg0) %>%
unlist %>% sum
terminalFreq <-
freqDf %>% filter(Phenotype %in% c("E", "M")) %>% select(Avg0) %>%
unlist %>% sum
c(
frustration,
coherence,
frequency,
cors,
bimodalities,
hybridFreq,
terminalFreq,
length(freq)
)
}) %>% reduce(rbind.data.frame) %>% set_names(metrics) %>%
mutate(Network = topoFiles %>% str_remove(".topo"))
DirectoryNav("CompiledData")
write_csv(df, paste0(net, "_ALL.csv"))
setwd("..")
}
#' Title
#'
#' @param net
#'
#' @return
#' @export
#'
#' @examples
AllDataFileNoFlag <- function(net) {
setwd(randRaw)
setwd(net)
metrics <-
c(
"minFrust",
"minFrustPhen",
"maxFrust",
"maxFrustPhen",
"meanFrust",
"meanNetFrust",
"minCoh",
"minCohPhen",
"maxCoh",
"maxCohPhen",
"meanCoh",
"meanNetCoh",
"minFreq",
"minFreqPhen",
"maxFreq",
"maxFreqPhen",
"meanFreq",
"corFreqFrust",
"pFreqFrust",
"corFreqCoh",
"pFreqCoh",
"corFreqStren",
"pFreqStren",
"corStrenCoh",
"pStrenCoh",
"corFrustCoh",
"pFrustCoh",
"corFrustStren",
"pFrustSren",
"bmSSF",
"bmCoh",
"bmFrust",
"hybridFreq",
"terminalFreq",
"nSS"
)
topoFiles <- list.files(".", ".topo$")
df <- lapply(topoFiles, function(topoFile) {
# print(topoFile)
freqDf <-
read_csv(
str_replace(topoFile, ".topo", "_finFlagFreq.csv"),
col_types = cols(),
lazy = F
)
if (nrow(freqDf) < 3)
return(rep(NA, 35))
frust <- freqDf$frust0
freq <- freqDf$Avg0
coh <- freqDf$coherence0
stren <- freqDf$Strength
if (is.null(coh)) {
print(topoFile)
freqDf <-
read_csv(
str_replace(topoFile, ".topo", "_finFlagFreq.csv"),
col_types = cols(),
lazy = F
)
d <- coherence(topoFile, write = F)
if (is.na(d)) {
freqDf$coherence0 <- NA
}
else {
d <-
d[d$init == d$fin, ] %>% mutate(states = init, coherence0 = Freq) %>%
select(states, coherence0)
coherenceVec <- d$coherence0
names(coherenceVec) <- d$states
freqDf$coherence0 <- coherenceVec[freqDf$states]
}
write_csv(
freqDf,
str_replace(topoFile, ".topo", "_finFlagFreq.csv"),
quote = "none",
na = ""
)
coh <- freqDf %>% filter(flag == 1) %>%
select(coherence0) %>% unlist
}
frustration <-
c(
frust %>% min(na.rm = T),
freqDf$Phenotype[which.min(frust)],
frust %>% max(na.rm = T),
freqDf$Phenotype[which.max(frust)],
frust %>% mean(na.rm = T),
sum(frust * freq, na.rm = T)
)
coherence <-
c(
coh %>% min(na.rm = T),
freqDf$Phenotype[which.min(coh)],
coh %>% max(na.rm = T),
freqDf$Phenotype[which.max(coh)],
coh %>% mean(na.rm = T),
sum(coh * freq, na.rm = T)
)
frequency <-
c(
freq %>% min(na.rm = T),
freqDf$Phenotype[which.min(freq)],
freq %>% max(na.rm = T),
freqDf$Phenotype[which.max(freq)],
freq %>% mean(na.rm = T)
)
cohFreq <-
cohFrust <- cohStren <- list(estimate = NA, p.value = NA)
if (!is.na(coh)) {
cohFreq <- cor.test(coh, log10(freq), method = "spearman")
cohFrust <- cor.test(coh, frust, method = "spearman")
cohStren <- cor.test(coh, stren, method = "spearman")
}
freqFrust <-
cor.test(log10(freq), frust, method = "spearman")
freqStren <-
cor.test(log10(freq), stren, method = "spearman")
frustStren <- cor.test(frust, stren, method = "spearman")
cors <- c(
freqFrust$estimate,
freqFrust$p.value,
cohFreq$estimate,
cohFreq$p.value,
freqStren$estimate,
freqStren$p.value,
cohStren$estimate,
cohStren$p.value,
cohFrust$estimate,
cohFrust$p.value,
frustStren$estimate,
frustStren$p.value
)
bimodalities <- c(
bimodality_coefficient(log10(freq)),
bimodality_coefficient(frust),
bimodality_coefficient(coh)
)
hybridFreq <-
freqDf %>% filter(Phenotype == "H") %>% select(Avg0) %>%
unlist %>% sum
terminalFreq <-
freqDf %>% filter(Phenotype %in% c("E", "M")) %>% select(Avg0) %>%
unlist %>% sum
c(
frustration,
coherence,
frequency,
cors,
bimodalities,
hybridFreq,
terminalFreq,
length(freq)
)
}) %>% reduce(rbind.data.frame) %>% set_names(metrics) %>%
mutate(Network = topoFiles %>% str_remove(".topo"))
DirectoryNav("CompiledData")
write_csv(df, paste0(net, "_ALLnoFlag.csv"))
setwd("..")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.