RemoveAllFiles <- function() {
filz <- list.files(".")
sapply(filz, file.remove)
}
DirectoryNav <- function(d) {
if (!dir.exists(d))
dir.create(d)
setwd(d)
}
bmodelFreqFileReader <- function(topoFile, flagFilter = T) {
df <-
read_csv(str_replace(topoFile, ".topo", "_finFlagFreq.csv"), lazy = F)
if (flagFilter)
df <- df %>% filter(flag == 1)
return(df)
}
skewness <- function(x, finite = TRUE) {
n = length(x)
S = (1 / n) * sum((x - mean(x)) ^ 3) / (((1 / n) * sum((x - mean(
x
)) ^ 2)) ^ 1.5)
if (finite == FALSE) {
S = S
} else{
S = S * (sqrt(n * (n - 1))) / (n - 2)
}
return(S)
}
kurtosis <- function(x, finite) {
n = length(x)
K = (1 / n) * sum((x - mean(x)) ^ 4) / (((1 / n) * sum((x - mean(
x
)) ^ 2)) ^ 2) - 3
if (finite == FALSE) {
K = K
}
else{
K = ((n - 1) * ((n + 1) * K - 3 * (n - 1)) / ((n - 2) * (n - 3))) + 3
}
return(K)
}
bimodality_coefficient <- function(x, finite = TRUE, ...) {
if (finite == TRUE) {
G = skewness(x, finite)
sample.excess.kurtosis = kurtosis(x, finite)
K = sample.excess.kurtosis
n = length(x)
B = ((G ^ 2) + 1) / (K + ((3 * ((
n - 1
) ^ 2)) / ((n - 2) * (n - 3))))
}
else{
G = skewness(x, FALSE)
K = kurtosis(x, FALSE)
B = ((G ^ 2) + 1) / (K)
}
return(B)
}
bimodality_coefficient <- function(vec)
{
vec <- na.omit(vec)
s <- sd(vec)
m <- mean(vec)
n <- length(vec)
sk <- sum((vec - mean(vec)) ^ 3) / ((length(vec) - 1) * sd(vec) ^ 3)
ku <- sum((vec - mean(vec)) ^ 4) / ((length(vec) - 1) * sd(vec) ^ 4) - 3
(sk ^ 2 + 1) / (ku + 3 * ((n - 1) ^ 2) / ((n - 2) * (n - 3)))
}
cfgAnalysis <- function(net)
{
cfgFile <- paste0(net, ".cfg")
cfgDat <- readLines(cfgFile)
numEdges <- cfgDat[30] %>% str_extract("\\d+") %>% as.integer
numNodes <- cfgDat[31] %>% str_extract("\\d+") %>% as.integer
nodes <- cfgDat[32:(31 + numNodes)] %>% str_remove("^\\d+?\t") %>%
str_trim %>% str_replace_all(regex("\\W+"), "")
topoDat <-
cfgDat[(32 + numNodes):length(cfgDat)] %>% str_split("\t") %>%
reduce(rbind.data.frame) %>% set_names(c("ID", "S", "Tar", "Type")) %>%
mutate(
Type = ifelse(Type == "2",-1, 1),
S = as.integer(S),
Tar = as.integer(Tar)
)
if (!file.exists(paste0(net, ".topo")))
{
topoDf <-
topoDat %>% select(-ID) %>% mutate(S = nodes[S], Tar = nodes[Tar]) %>%
set_names(c("Source", "Target", "Type")) %>%
mutate(Type = ifelse(Type == -1, 2, 1))
write_delim(topoDf,
paste0(net, ".topo"),
delim = " ",
quote = "none")
}
return(list(nodes, topoDat))
}
frustCalcRAC <- function(state, topoDat)
{
sum(state[topoDat$S] * state[topoDat$Tar] == topoDat$Type) / nrow(topoDat)
}
frustCalcRAC <- frustCalcRAC %>% cmpfun
discretize <- function(net)
{
setwd(paste0(RACIPE_WT, "/", net))
ls <- cfgAnalysis(net)
nodes <- ls[[1]]
topoDat <- ls[[2]]
solutionDf <-
paste0(net, "_solution.dat") %>% read_delim(delim = "\t") %>%
set_names(c("ParIndex", "nStates", "Count", nodes)) %>%
mutate(Count = Count / max(Count)) %>%
select(all_of(nodes), Count)
dots <- lapply(nodes, as.symbol)
states <- solutionDf %>% select(-Count) %>% sapply(function(x) {
y <- (x - mean(x)) / sd(x)
ifelse(y > 0, 1,-1)
}) %>% data.frame %>% set_names(nodes) %>% mutate(Count = solutionDf$Count) %>%
group_by(across(nodes)) %>% summarise(Frequency = sum(Count))
states$Frequency <- states$Frequency / sum(states$Frequency)
states$Frustration <- states %>% select(all_of(nodes)) %>%
apply(1, function(x) {
frustCalcRAC(x, topoDat)
})
statesDf <- states %>%
unite(State, all_of(nodes), sep = "") %>%
mutate(State = paste0("'", State %>% str_replace_all("-1", "0"), "'"))
write_csv(statesDf, paste0(net, "_discreteStates.csv"), quote = "none")
print(net)
}
SecondarySignals <- function(topoDf, sig) {
targets <- topoDf %>% filter(Source == sig) %>%
select(Target) %>% unlist
secSigs <- c()
}
getEMSONodes <- function(topoFile)
{
wd <- getwd()
ls <- TopoToIntMat(topoFile)
intMat <- ls[[1]]
nodes <- ls[[2]]
colnames(intMat) <- rownames(intMat) <- nodes
signal <- which(apply(intMat, 2, function(x) {
all(x == 0)
}))
output <- which(apply(intMat, 1, function(x) {
all(x == 0)
}))
secondary_signal <- which(apply(intMat, 2, function(x) {
if (length(signal) != 0)
all(x[-signal] == 0)
else
F
}))
secondary_output <- which(apply(intMat, 1, function(x) {
if (length(output) != 0)
all(x[-output] == 0)
else
F
}))
ls <-
readLines(str_replace(topoFile, ".topo", ".teams")) %>% str_split(",")
names(ls[[1]]) <- paste0("E", 1:length(ls[[1]]))
names(ls[[2]]) <- paste0("M", 1:length(ls[[2]]))
groups <- ls %>% unlist
sigs <- unique(nodes[c(signal, secondary_signal)])
names(sigs) <- paste0("S", 1:length(sigs))
outs <- unique(nodes[c(output, secondary_output)])
if (length(outs) > 0)
names(outs) <- paste0("O", 1:length(outs))
nodes <- unique(c(groups, sigs, outs))
nodesInGroups <- which(nodes %in% groups)
dummy <- sapply(1:length(nodes), function(x) {
n <- nodes[x]
if (n %in% groups)
names(nodes)[x] <<- names(groups[groups == nodes[x]])
if (n %in% sigs)
names(nodes)[x] <<- names(sigs[sigs == nodes[x]])
if (n %in% outs)
names(nodes)[x] <<- names(outs[outs == nodes[x]])
})
setwd(wd)
return(nodes)
}
correlGrob <-
function(df,
x,
y,
xPos = NULL,
yPos = NULL,
method = "spearman")
{
corr <- cor.test(df[[x]], df[[y]], method = method)
pVal <- ifelse(corr$p.value < 0.05, "*", "")
xPos <- ifelse(!is.null(xPos), xPos, 0.5)
yPos <- ifelse(!is.null(yPos), yPos, 0.9)
grob <-
grobTree(textGrob(
paste0("\u03c1 : ", round(corr$estimate, 2), pVal),
x = xPos,
y = yPos,
hjust = 0,
gp = gpar(
col = "black",
fontsize = 18,
fontface = "bold"
)
))
return(grob)
}
multiFactorCorrelation <-
function(df,
x,
y,
z,
label = T,
method = "spearman")
{
facts <- unique(df[[x]])
df[[y]] <- as.numeric(df[[y]])
df[[z]] <- as.numeric(df[[z]])
s <- sapply(facts, function(f) {
d <- df[df[[x]] == f,] %>% select(all_of(c(z, y)))
d <- cor.test(d[[y]], d[[z]], method = method)
if (label)
paste0("\u03c1: ",
round(d$estimate, 2),
ifelse(d$p.value < 0.05, "*", ""))
else
c(d$estimate, d$p.value)
})
if (label)
{
names(s) <- facts
}
else
{
s <-
s %>% t %>% data.frame %>% set_names(c("Correlation", "pValue")) %>%
mutate(Factors = facts)
}
s
}
mergeNets <- function(nets, nam) {
setwd(topoFileFolder)
df <- lapply(nets, function(net) {
read.delim(paste0(net, ".topo"), sep = "") %>%
mutate(Source = tolower(Source),
Target = tolower(Target))
}) %>% reduce(rbind.data.frame) %>% distinct
write_delim(df,
paste0(nam, ".topo"),
delim = " ",
quote = "none")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.