#' \code{S3} Class for univariate functional datasets.
#'
#' This function implements a constructor for elements of \code{S3} class
#' \code{fData}, aimed at implementing a representation of a functional
#' dataset.
#'
#' The functional dataset is represented as a collection of measurement of the
#' observations on an evenly spaced, 1D grid of discrete points (representing,
#' e.g. time), namely, for functional data defined over a grid \eqn{[t_0,
#' t_1, \ldots, t_{P-1}]}:
#'
#' \deqn{ f_{i,j} = f_i( t_0 + j h ), \quad h = \frac{t_P - t_0}{N},
#' \quad \forall j = 1, \ldots, P, \quad \forall i = 1, \ldots
#' N.}
#'
#' @param grid the evenly spaced grid over which the functional observations are
#' measured. It must be a numeric vector of length \code{P}.
#' @param values the values of the observations in the functional dataset,
#' provided in form of a 2D data structure (e.g. matrix or array) having as
#' rows the observations and as columns their measurements over the 1D grid of
#' length \code{P} specified in \code{grid}.
#'
#' @return The function returns a \code{S3} object of class \code{fData}, containing
#' the following elements:
#' \itemize{
#' \item{"\code{N}"}{: the number of elements in the dataset;}
#' \item{"\code{P}"}{: the number of points in the 1D grid over which elements
#' are measured;}
#' \item{"\code{t0}"}{: the starting point of the 1D grid;}
#' \item{"\code{tP}"}{: the ending point of the 1D grid;}
#' \item{"\code{values}"}{: the matrix of measurements of the functional
#' observations on the 1D grid provided with \code{grid}.}
#' }
#'
#' @seealso \code{\link{generate_gauss_fdata}}, \code{\link{sub-.fData}}
#'
#' @examples
#' # Defining parameters
#' N = 20
#' P = 1e2
#'
#' # One dimensional grid
#' grid = seq( 0, 1, length.out = P )
#'
#' # Generating an exponential covariance function (see related help for more
#' # information )
#' C = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
#'
#' # Generating a synthetic dataset with a gaussian distribution and
#' # required mean and covariance function:
#' values = generate_gauss_fdata( N,
#' centerline = sin( 2 * pi * grid ),
#' Cov = C )
#'
#' fD = fData( grid, values )
#'
#' @export
#'
fData = function( grid, values )
{
P = length( grid )
values = toRowMatrixForm( values )
if( P != ncol( values ) )
{
stop( ' Error in fData: you provided mismatching grid and data structure
of values\n')
}
h = grid[ 2 ] - grid[ 1 ]
return( structure( list( t0 = grid[ 1 ],
tP = grid[ P ],
h = h,
P = P,
N = nrow( values ),
values = values ),
class = c( 'fData' ) ) )
}
#' Append two compatible univariate functional datasets
#'
#' This is a convenience function that simplifies the task of appending univariate
#' functional observations of two datasets to a unique univariate functional dataset.
#'
#' The two original datasets must be compatible, i.e. must be defined on the same grid.
#' If we denote with \eqn{X_1, \ldots, X_n} the first dataset, defined over the
#' grid \eqn{I = t_1, \ldots, t_P}, and with \eqn{Y_1, \ldots, Y_m} the second functional dataset,
#' defined on the same grid, the method returns the union dataset obtained by taking all the
#' \eqn{n + m} observations together.
#'
#' @param fD1 is the first functional dataset, stored into an \code{fData} object.
#' @param fD2 is the second functional dataset, stored into an \code{fData} object.
#'
#' @return The function returns an \code{fData} object containing the union of \code{fD1} and \code{fD2}
#'
#' @seealso \code{\link{append_mfData}}, \code{\link{fData}}
#'
#' @examples
#' # Creating two simple univariate datasets
#'
#' grid = seq(0, 2 * pi, length.out = 100)
#'
#' values1 = matrix( c(sin(grid),
#' sin(2 * grid)), nrow = 2, ncol = length(grid),
#' byrow=TRUE)
#'
#' values2 = matrix( c(cos(grid),
#' cos(2 * grid)), nrow = 2, ncol = length(grid),
#' byrow=TRUE)
#'
#' fD1 = fData( grid, values1 )
#' fD2 = fData( grid, values2 )
#'
#' # Appending them to a unique dataset
#' append_fData(fD1, fD2)
#'
#' @export
append_fData = function(fD1, fD2)
{
stopifnot((fD1$P == fD2$P) & (fD1$t0 == fD2$t0) & (fD1$tP == fD2$tP)
& (fD1$h == fD2$h))
grid = seq(fD1$t0, fD1$tP, length.out=fD1$P)
return(fData(grid, values = rbind(fD1$values, fD2$values)))
}
#' Specialized method to plot \code{fData} objects
#'
#' This function performs the plot of a functional univariate dataset stored in
#' an object of class \code{fData}. It is able to accept all the usual
#' customizable graphical parameters, otherwise it will use the default ones.
#'
#' @param x the univariate functional dataset in form of \code{fData} object.
#' @param ... additional graphical parameters to be used in plotting functions
#'
#' @seealso \code{\link{fData}}
#'
#' @examples
#'
#' N = 20
#' P = 1e2
#'
#' # One dimensional grid
#' grid = seq( 0, 1, length.out = P )
#'
#' # Generating an exponential covariance function (see related help for more
#' # information )
#' C = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
#'
#' # Generating a synthetic dataset with a gaussian distribution and
#' # required mean and covariance function:
#' values = generate_gauss_fdata( N,
#' centerline = sin( 2 * pi * grid ),
#' Cov = C )
#'
#' fD = fData( grid, values )
#'
#' plot( fD )
#'
#'
#' @export
#'
plot.fData = function( x, ... )
{
.plot_fData( x, ... )
}
.plot_fData = function( x,
type = 'l', lty = 1,
col = fDColorPalette( min( c( x$N,
30 + x$N %% 30 ) ) ),
xlab = '', ylab = '', main = '',
... )
{
graphics::matplot( seq( x$t0, x$tP, length.out = x$P ),
t( x$values ), type = type, lty = lty,
col = col, xlab = xlab, ylab = ylab, main = main, ... )
}
#' \code{S3} class for multivariate functional datasets
#'
#' This function implements a constructor for elements of \code{S3} class
#' \code{mfData}, aimed at implementing a representation of a multivariate
#' functional dataset.
#'
#' The functional dataset is represented as a collection of \code{L} components,
#' each one an object of class \code{fData}. Each component must contain elements
#' defined on the same grid as the others, and must contain the same number of
#' elements (\code{N}).
#'
#' @param grid the (evenly spaced) grid over which the functional dataset is
#' defined.
#' @param Data_list a \code{list} containing the \code{L} components of the
#' multivariate functional dataset, defined as 2D data structures (e.g. matrix
#' or array) having as rows the \code{N} observations and as columns the
#' \code{P} measurements on the grid provided by \code{grid}.
#'
#' @return
#' The function returns a \code{S3} object of class \code{mfData}, containing
#' the following elements:
#' \itemize{
#' \item{"\code{N}"}{: the number of elements in the dataset;}
#' \item{"\code{L}"}{: the number of components of the functional dataset;}
#' \item{"\code{P}"}{: the number of points in the 1D grid over which elements
#' are measured;}
#' \item{"\code{t0}"}{: the starting point of the 1D grid;}
#' \item{"\code{tP}"}{: the ending point of the 1D grid;}
#' \item{"\code{fDList}"}{: the list of \code{fData} objects representing the
#' \code{L} components as corresponding univariate functional datasets.}
#' }
#'
#' @seealso \code{\link{fData}}, \code{\link{generate_gauss_fdata}},
#' \code{\link{generate_gauss_mfdata}}
#'
#' @examples
#' # Defining parameters
#' N = 1e2
#'
#' P = 1e3
#'
#' t0 = 0
#' t1 = 1
#'
#' # Defining the measurement grid
#' grid = seq( t0, t1, length.out = P )
#'
#' # Generating an exponential covariance matrix to be used in the simulation of
#' # the functional datasets (see the related help for details)
#' C = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
#'
#' # Simulating the measurements of two univariate functional datasets with
#' # required center and covariance function
#' Data_1 = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C )
#' Data_2 = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C )
#'
#' # Building the mfData object
#' mfData( grid, list( Data_1, Data_2 ) )
#'
#' @export
#'
mfData = function( grid, Data_list )
{
dimMatrix = sapply( Data_list, dim )
if( any( sapply( dimMatrix, is.null ) ) )
{
if( ! all( sapply( dimMatrix, is.null ) ) )
{
stop( ' Error in mfData: you provided mismatching datasets as Data_list')
}
Data_list = lapply( Data_list, toRowMatrixForm )
} else if( unique( apply( dimMatrix, 1,
function( x )( length( unique( x ) ) ) ) ) != 1 )
{
stop( ' Error in mfData: you provided mismatching datasets as Data_list')
}
L = length( Data_list )
if( is.null( names( Data_list ) ) )
{
nms = 1 : L
} else {
nms = names( Data_list )
}
fDList = NULL
for( nmL in nms )
{
fDList[[ nmL ]] = fData( grid, toRowMatrixForm( Data_list[[ nmL ]] ) )
}
return( structure( list( N = fDList[[ 1 ]]$N,
L = L,
P = fDList[[ 1 ]]$P,
t0 = fDList[[ 1 ]]$t0,
tP = fDList[[ 1 ]]$tP,
fDList = fDList ),
class = c( 'mfData' ) ) )
}
#' Append two compatible multivariate functional datasets
#'
#' This is a convenience function that simplifies the task of appending multivariate
#' functional observations of two datasets to a unique multivariate functional dataset.
#'
#' The two original datasets must be compatible, i.e. must have same number of components
#' (dimensions) and must be defined on the same grid. If we denote with
#' \eqn{X_1^(i), \ldots, X_n^(i)}, \eqn{i=0, \ldots, L} the first dataset, defined over the
#' grid \eqn{I = t_1, \ldots, t_P}, and with \eqn{Y_1^(i), \ldots, Y_m^(i)}, \eqn{i=0, \ldots, L}
#' the second functional dataset, the method returns the union dataset obtained by taking all the
#' \eqn{n + m} observations together.
#'
#' @param mfD1 is the first multivariate functional dataset, stored into an \code{mfData} object.
#' @param mfD2 is the second multivariate functional dataset, stored into an \code{mfData} object.
#'
#' @return The function returns a \code{mfData} object containing the union of \code{mfD1} and \code{mfD2}
#'
#' @seealso \code{\link{append_fData}}, \code{\link{mfData}}
#'
#' @examples
#' # Creating two simple bivariate datasets
#'
#' grid = seq(0, 2 * pi, length.out = 100)
#'
#' values11 = matrix( c(sin(grid),
#' sin(2 * grid)), nrow = 2, ncol = length(grid),
#' byrow=TRUE)
#' values12 = matrix( c(sin(3 * grid),
#' sin(4 * grid)), nrow = 2, ncol = length(grid),
#' byrow=TRUE)
#' values21 = matrix( c(cos(grid),
#' cos(2 * grid)), nrow = 2, ncol = length(grid),
#' byrow=TRUE)
#' values22 = matrix( c(cos(3 * grid),
#' cos(4 * grid)), nrow = 2, ncol = length(grid),
#' byrow=TRUE)
#'
#' mfD1 = mfData( grid, list(values11, values12) )
#' mfD2 = mfData( grid, list(values21, values22) )
#'
#' # Appending them to a unique dataset
#' append_mfData(mfD1, mfD2)
#'
#' @export
append_mfData = function(mfD1, mfD2)
{
stopifnot((mfD1$P == mfD2$P) & (mfD1$t0 == mfD2$t0) & (mfD1$tP == mfD2$tP)
& (mfD1$fDList[[1]]$h == mfD2$fDList[[1]]$h) & (mfD1$L == mfD2$L))
return(as.mfData(lapply(1:mfD1$L,
function(id) append_fData(mfD1$fDList[[id]], mfD2$fDList[[id]]))))
}
#' Specialized method to plot \code{mfData} objects
#'
#' This function performs the plot of a functional multivariate dataset stored
#' in an object of class \code{mfData}. It is able to accept all the usual
#' customizable graphical parameters, otherwise it will use the default ones.
#'
#' The current active graphical device is split into a number of sub-figures,
#' each one meant to contain the plot of the corresponding dimension of the
#' \code{mfData} object. In particular, they are arranged in a rectangular
#' lattice with a number of rows equal to \eqn{ \lfloor \sqrt{ L } \rfloor }
#' and a number of columns equal to \eqn{ \lceil L / \lfloor \sqrt{L} \rfloor
#' \rceil }.
#'
#' A special use of the graphical parameters allows to set up y-labels and
#' titles for all the sub-figures in the graphical window. In particular,
#' parameters \code{ylab} and \code{main} can take as argument either a single
#' string, that are repeatedly used for all the sub-graphics, or a list of
#' different strings (one for each of the \code{L} dimensions) that have to be
#' used in the corresponding graphic.
#'
#' @param x the multivariate functional dataset in form of \code{mfData} object.
#' @param ... additional graphical parameters to be used in plotting functions
#' (see \code{Details} for the use of \code{ylab} and \code{main}).
#'
#' @seealso \code{\link{mfData}}, \code{\link{fData}}, \code{\link{plot.fData}}
#'
#' @examples
# Defining parameters
#' N = 1e2
#'
#' P = 1e3
#'
#' t0 = 0
#' t1 = 1
#'
#' # Defining the measurement grid
#' grid = seq( t0, t1, length.out = P )
#'
#' # Generating an exponential covariance matrix to be used in the simulation of
#' # the functional datasets (see the related help for details)
#' C = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
#'
#' # Simulating the measurements of two univariate functional datasets with
#' # required center and covariance function
#' Data_1 = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C )
#' Data_2 = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C )
#'
#' # Building the mfData object and plotting tt
#' plot( mfData( grid, list( Data_1, Data_2 ) ),
#' xlab = 'time', ylab = list( '1st dim.', '2nd dim.' ),
#' main = list( 'An important plot here', 'And another one here' ) )
#'
#' @export
#'
plot.mfData = function( x, ... )
{
.plot_mfData( x, ... )
}
.plot_mfData = function( x,
type = 'l',lty = 1,
col = fDColorPalette( min( c( x$N,
30 + x$N %% 30 ) ) ),
xlab = NULL, ylab = NULL, main = NULL,
add = FALSE, ... )
{
if (add == FALSE)
{
mfrow_rows <- floor(sqrt(x$L))
mfrow_cols <- ceiling(x$L / floor(sqrt(x$L)))
oldpar <- graphics::par(mfrow = c(1, 1))
on.exit(graphics::par(oldpar))
graphics::par(mfrow = c(mfrow_rows, mfrow_cols))
}
if( ! is.null( ylab ) )
{
if( length( ylab ) == 1 )
{
ylab = rep( ylab, x$L )
} else if( length( ylab ) != x$L )
{
stop( 'Error in plot_mfData_default: you specified a wrong number of y
labels' )
}
} else {
ylab = rep( list( '' ), x$L )
}
if( ! is.null( main ) )
{
if( length( main ) == 1 )
{
main = rep( main, x$L )
} else if( length( main ) != x$L )
{
stop( 'Error in plot_mfData_default: you specified a wrong number of
subtitles' )
}
} else {
main = rep( list( '' ), x$L )
}
# for( iL in 1 : x$L )
# {
# plot.fData( x$fDList[[ iL ]],
# ylab = ylab[[ iL ]],
# main = main[[ iL ]],
# col = col,
# lty = lty,
# add = add,
# ... )
#
# if( iL < x$L )
# {
# dev.set( dev.next() )
# }
# }
plot_aux = function( i, ... )( plot.fData( x$fDList[[ i ]],
ylab = ylab[[ i ]],
main = main[[ i ]],
col = col,
lty = lty,
add = add,
... ) )
invisible( sapply( 1 : x$L, plot_aux, ... ) )
}
#' Operator \code{+} and \code{-} for \code{fData} objects
#'
#' These methods provide operators \code{+} and \code{-} to perform sums
#' or differences between an \code{fData} object and either another
#' \code{fData} object or other compliant data structures, like matrices or
#' vectors or arrays, representing the pointwise measurements of the second
#' term of the sum.
#'
#' If the second term of the operation is an \code{fData} object, it must be
#' defined over the same grid as the first.
#'
#' @param fD the univariate functional dataset in form of \code{fData} object.
#' @param A either an \code{fData} object, defined on the very same grid of
#' \code{fD}, or a 1D data structure (such as 1D array or raw
#' numeric vector), or a 2D data structure (such as 2D array or raw numeric
#' matrix ), that specifies the second term of the sum.
#' In case of a 1D data structure, the sum is performed element-wise between
#' each element of \code{fD} and \code{A}, and \code{A} must have length
#' \code{P}, size of \code{fD}'s grid.
#' In case of a 2D data structure, the sum is performed element-wise between
#' corresponding elements of \code{fD} and \code{A}'s rows. In this case,
#' \code{A} must have \code{P} columns, as the size of \code{fD}'s grid.
#'
#' @name plus-.fData
#'
#' @return The function returns an \code{fData} object, whose function values
#' have undergone the sum/difference.
#'
#'
NULL
#' @rdname plus-.fData
#'
#' @examples
#' fD = fData( seq( 0, 1, length.out = 10 ),
#' values = matrix( seq( 1, 10 ),
#' nrow = 21, ncol = 10, byrow = TRUE ) )
#' fD + 1 : 10
#'
#' fD + array( 1, dim = c( 1, 10 ) )
#'
#' fD + fD
#'
#' @export
"+.fData" = function( fD, A )
{
if( 'fData' %in% class( A ) )
{
if( fD$t0 != A$t0 || fD$tP != A$tP || fD$h != A$h || fD$P != A$P )
{
stop( 'Error in +.fData: functional data defined over
mismatching intervals' )
}
if( A$N == 1 )
{
fD$values = t( t( fD$values ) + as.vector( A$values ) )
} else {
fD$values = fD$values + A$values
}
} else if( is.null( dim( A ) ) || nrow( A ) == 1 ){
A = as.vector( A )
if( length( A ) != fD$P )
{
stop( 'Error in +.fData: mismatching arguments')
}
fD$values = t( t( fD$values ) +
as.vector( rep( A, fD$P / length( A ) ) ) )
} else if( is.matrix( A ) ) {
if( ncol( A ) != fD$P || nrow( A ) != fD$N )
{
stop('Error in +.fData: mismatching arguments' )
}
fD$values = fD$values + A
}
return( fD )
}
#' @rdname plus-.fData
#'
#' @examples
#' fD = fData( seq( 0, 1, length.out = 10 ),
#' values = matrix( seq( 1, 10 ),
#' nrow = 21, ncol = 10, byrow = TRUE ) )
#' fD - 2 : 11
#'
#' fD - array( 1, dim = c( 1, 10 ) )
#'
#' fD - fD
#'
#' @export
#'
"-.fData" = function( fD, A )
{
if( 'fData' %in% class( A ) )
{
if( fD$t0 != A$t0 || fD$tP != A$tP || fD$h != A$h || fD$P != A$P )
{
stop( 'Error in -.fData: functional data defined over
mismatching intervals' )
}
if( A$N == 1 )
{
fD$values = t( t( fD$values ) - as.vector( A$values ) )
} else {
fD$values = fD$values - A$values
}
} else if( is.null( dim( A ) ) || nrow( A ) == 1 ){
A = as.vector( A )
if( length( A ) != fD$P )
{
stop( 'Error in -.fData: mismatching arguments')
}
fD$values = t( t( fD$values ) -
as.vector( rep( A, fD$P / length( A ) ) ) )
} else if( is.matrix( A ) ) {
if( ncol( A ) != fD$P || nrow( A ) != fD$N )
{
stop('Error in -.fData: mismatching arguments' )
}
fD$values = fD$values - A
}
return( fD )
}
#' Operator \code{*} and \code{/} for \code{fData} objects
#'
#' These methods provide operators \code{*} and \code{/} to perform products
#' or divisions between an \code{fData} object and either a number or a
#' compliant 1D data structure, like numeric vector, array or
#' matrix. The operation is computed by performing the element-wise product
#' or division between \code{fD}'s observations and the provided value(s).
#'
#' If the second argument is a 1D data structure, it must have length \code{N}
#' equal to the number of observations in \code{fD}.
#'
#'
#' @param fD the univariate functional dataset in form of \code{fData} object.
#' @param a either a single number or a 1D data structure (such as numeric
#' raw vector, matrix or array) specifying the factor(s) to use in the
#' multiplication/division of \code{fD} elements' values.
#' In the latter case, each factor is used with the corresponding element in
#' \code{fD}, hence a must have length \code{N}, number of observations in
#' \code{fD}.
#'
#' @name times-.fData
#'
#' @return The function returns an \code{fData} object, whose function values
#' have undergone the product/division.
#'
NULL
#' @rdname times-.fData
#'
#' @examples
#'
#' N = 11
#' fD = fData( seq( 0, 1, length.out = 10 ),
#' values = matrix( seq( 1, 10 ),
#' nrow = N, ncol = 10, byrow = TRUE ) )
#' fD * 2
#'
#' fD * seq( 1, N )
#'
#' @export
#'
"*.fData" = function( fD, a )
{
if( ! 1 %in% dim( as.matrix( a ) ) )
{
stop( 'Error in *.fData: dimensions are not compliant' )
}
fD$values = fD$values * as.numeric( a )
return( fD )
}
#' @rdname times-.fData
#'
#' @examples
#'
#' N = 11
#' fD = fData( seq( 0, 1, length.out = 10 ),
#' values = matrix( seq( 1, 10 ),
#' nrow = N, ncol = 10, byrow = TRUE ) )
#' fD / 2
#'
#' fD / rep( 10, N )
#'
#' @export
"/.fData" = function( fD, a )
{
if( ! 1 %in% dim( as.matrix( a ) ) )
{
stop( 'Error in *.fData: dimensions are not compliant' )
}
fD$values = fD$values / as.numeric( a )
return( fD )
}
#' Cross-sectional mean of of a fData object.
#'
#' This \code{S3} method implements the \bold{cross-sectional} mean of a
#' univariate functional dataset stored in a \code{fData} object, i.e. the
#' mean computed point-by-point along the grid over which the dataset is
#' defined.
#'
#' @param x the univariate functional dataset whose cross-sectional mean must be
#' computed, in form of \code{fData} object.
#' @param ... possible additional parameters. This argument is kept for
#' compatibility with the \code{S3} definition of \code{mean}, but it is not
#' actually used.
#'
#' @return The function returns a \code{fData} object with one observation
#' defined on the same grid as the argument \code{x}'s representing the
#' desired cross-sectional mean.
#'
#' @seealso \code{\link{fData}}
#'
#' @examples
#'
#' N = 1e2
#' P = 1e2
#' grid = seq( 0, 1, length.out = P )
#'
#' # Generating a gaussian functional sample with desired mean
#' target_mean = sin( 2 * pi * grid )
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.2 )
#' fD = fData( grid, generate_gauss_fdata( N,
#' centerline = target_mean,
#' Cov = C ) )
#'
#' # Graphical representation of the mean
#' plot( fD )
#' plot( mean( fD ), col = 'black', lwd = 2, lty = 2, add = TRUE )
#'
#'
#' @export
mean.fData = function( x, ... )
{
return( fData( seq( x$t0, x$tP, length.out = x$P ),
colMeans( x$values ) ) )
}
#' Cross-sectional mean of of a mfData object.
#'
#' This \code{S3} method implements the \bold{cross-sectional} mean of a
#' multivariate functional dataset stored in a \code{mfData} object, i.e. the
#' mean computed point-by-point along the grid over which the dataset is
#' defined.
#'
#' @param x the multivariate functional dataset whose cross-sectional mean must
#' be computed, in form of \code{mfData} object.
#' @param ... possible additional parameters. This argument is kept for
#' compatibility with the \code{S3} definition of \code{mean}, but it is not
#' actually used.
#'
#' @return The function returns a \code{mfData} object with one observation
#' defined on the same grid as the argument \code{x}'s representing the
#' desired cross-sectional mean.
#'
#' @seealso \code{\link{mfData}}
#'
#' @examples
#'
#' N = 1e2
#' L = 3
#' P = 1e2
#' grid = seq( 0, 1, length.out = P )
#'
#' # Generating a gaussian functional sample with desired mean
#' target_mean = sin( 2 * pi * grid )
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.2 )
#' # Independent components
#' correlations = c( 0, 0, 0 )
#' mfD = mfData( grid,
#' generate_gauss_mfdata( N, L,
#' correlations = correlations,
#' centerline = matrix( target_mean,
#' nrow = 3,
#' ncol = P,
#' byrow = TRUE ),
#' listCov = list( C, C, C ) )
#' )
#'
#' # Graphical representation of the mean
#' oldpar <- par(mfrow = c(1, 1))
#' par(mfrow = c(1, L))
#'
#' for(iL in 1:L)
#' {
#' plot(mfD$fDList[[iL]])
#' plot(
#' mean(mfD)$fDList[[iL]],
#' col = 'black',
#' lwd = 2,
#' lty = 2,
#' add = TRUE
#' )
#' }
#'
#' par(oldpar)
#'
#' @export
mean.mfData = function( x, ... )
{
return( mfData( seq( x$t0, x$tP, length.out = x$P ),
lapply( x$fDList, function( y )( mean( y )$values ) ) ) )
}
#' Covariance function for functional data
#'
#' \code{S3} method to compute the sample covariance and cross-covariance
#' functions for a set of functional data.
#'
#' Given a univariate random function X, defined
#' over the grid \eqn{I = [a,b]}, the covariance
#' function is defined as:
#'
#' \deqn{C(s,t) = Cov( X(s), X(t) ), \qquad s,t \in I.}
#'
#' Given another random function, Y, defined over the same grid as X, the cross-
#' covariance function of X and Y is:
#'
#' \deqn{C^{X,Y}( s,t ) = Cov( X(s), Y(t) ), \qquad s, t \in I.}
#'
#' For a generic L-dimensional random function X, i.e. an L-dimensional
#' multivariate functional datum, the covariance function is defined as the set
#' of blocks:
#'
#' \deqn{C_{i,j}(s,t) = Cov( X_i(s), X_j(t)), i,j = 1, ...,L, s,t \in I,}
#'
#' while the cross-covariance function is defined by the blocks:
#'
#' \deqn{C^{X,Y}_{i,j}(s,t) = Cov( X_i(s), Y_j(t))}
#'
#' @details
#'
#' The method \code{cov_fun} provides the sample estimator of the covariance or
#' cross-covariance functions for univariate or multivariate functional datasets.
#'
#' The class of \code{X} (\code{fData} or \code{mfData}) is used to dispatch the
#' correct implementation of the method.
#'
#' @param X is the (eventually first) functional dataset, i.e. either an object
#' of class \code{fData} or an object of class \code{mfData};
#' @param Y is the (optional) second functional dataset to be used to compute the
#' cross-covariance function, either \code{NULL} or an \code{fData} or
#' \code{mfData} object (see the Value section for details).
#'
#' @return
#'
#' The following cases are given:
#'
#' \itemize{
#' \item{if \code{X} is of class \code{fData} and \code{Y} is \code{NULL}, then
#' the covariance function of \code{X} is returned;}
#' \item{if \code{X} is of class \code{fData} and \code{Y} is of
#' class \code{fData},
#' the cross-covariance function of the two datasets is returned;}
#' \item{if \code{X} is of class \code{mfData} and \code{Y} is \code{NULL},
#' the upper-triangular blocks of the covariance function of \code{X}
#' are returned (in form of list and by row, i.e. in the sequence 1_1, 1_2, ...,
#' 1_L, 2_2, ... - have a look at the labels of the list with \code{str});}
#' \item{if \code{X} is of class \code{mfData} and \code{Y} is of
#' class \code{fData},
#' the cross-covariances of \code{X}'s components and \code{Y} are
#' returned (in form of list);}
#' \item{if \code{X} is of class \code{mfData} and \code{Y} is of
#' class \code{mfData},
#' the upper-triangular blocks of the cross-covariance of \code{X}'s and
#' \code{Y}'s components are returned (in form of list and by row, i.e. in the
#' sequence 1_1, 1_2, ..., 1_L, 2_2, ... - have a look at the labels
#' of the list with \code{str}));}}
#'
#' In any case, the return type is either an instance of the \code{S3} class \code{Cov}
#' or a list of instances of such class (for the case of multivariate
#' functional data).
#'
#' @seealso \code{\link{fData}}, \code{\link{mfData}}, \code{\link{plot.Cov}}
#'
#' @examples
#'
#' # Generating a univariate functional dataset
#' N = 1e2
#'
#' P = 1e2
#' t0 = 0
#' t1 = 1
#'
#' time_grid = seq( t0, t1, length.out = P )
#'
#' Cov = exp_cov_function( time_grid, alpha = 0.3, beta = 0.4 )
#'
#' D1 = generate_gauss_fdata( N, centerline = sin( 2 * pi * time_grid ), Cov = Cov )
#' D2 = generate_gauss_fdata( N, centerline = sin( 2 * pi * time_grid ), Cov = Cov )
#'
#' fD1 = fData( time_grid, D1 )
#' fD2 = fData( time_grid, D2 )
#'
#' # Computing the covariance function of fD1
#'
#' C = cov_fun( fD1 )
#' str( C )
#'
#' # Computing the cross-covariance function of fD1 and fD2
#' CC = cov_fun( fD1, fD2 )
#' str( CC )
#'
#' # Generating a multivariate functional dataset
#' L = 3
#'
#' C1 = exp_cov_function( time_grid, alpha = 0.1, beta = 0.2 )
#' C2 = exp_cov_function( time_grid, alpha = 0.2, beta = 0.5 )
#' C3 = exp_cov_function( time_grid, alpha = 0.3, beta = 1 )
#'
#' centerline = matrix( c( sin( 2 * pi * time_grid ),
#' sqrt( time_grid ),
#' 10 * ( time_grid - 0.5 ) * time_grid ),
#' nrow = 3, byrow = TRUE )
#'
#' D3 = generate_gauss_mfdata( N, L, centerline,
#' correlations = c( 0.5, 0.5, 0.5 ),
#' listCov = list( C1, C2, C3 ) )
#'
#' # adding names for better readability of BC3's labels
#' names( D3 ) = c( 'comp1', 'comp2', 'comp3' )
#' mfD3 = mfData( time_grid, D3 )
#'
#' D1 = generate_gauss_fdata( N, centerline = sin( 2 * pi * time_grid ),
#' Cov = Cov )
#' fD1 = fData( time_grid, D1 )
#'
#' # Computing the block covariance function of mfD3
#' BC3 = cov_fun( mfD3 )
#' str( BC3 )
#'
#' # computing cross-covariance between mfData and fData objects
#' CC = cov_fun( mfD3, fD1 )
#' str( CC )
#'
#' @export
#'
cov_fun = function( X, Y = NULL )
{
UseMethod( 'cov_fun', X )
}
#' @rdname cov_fun
#' @export
cov_fun.fData = function( X, Y = NULL )
{
if( ! is.null( Y ) )
{
if( class( Y ) != 'fData' )
{
stop( 'Error: you have to provide an fData object as Y argument')
}
if( X$t0 != Y$t0 || X$tP != Y$tP || X$h != Y$h ||
X$P != Y$P || X$N != Y$N )
{
stop( 'Error: you have to provide a pair of compliant fData objects')
}
return( structure( list( t0 = X$t0,
tP = X$tP,
h = X$h,
P = X$P,
values = stats::cov( X$values, Y$values ) ),
class = 'Cov' ) )
} else {
return( structure( list( t0 = X$t0,
tP = X$tP,
h = X$h,
P = X$P,
values = stats::cov( X$values ) ),
class = 'Cov' ) )
}
}
#' @rdname cov_fun
#'
#' @export
cov_fun.mfData = function( X, Y = NULL )
{
if( ! is.null( Y ) )
{
if( ! class( Y ) %in% c( 'fData', 'mfData' ) )
{
stop( 'Error: you have to provide either an fData or mfData object')
} else if( X$N != Y$N || X$t0 != Y$t0 || X$tP != Y$tP || X$P != Y$P )
{
stop( 'Errror: you have to provide a Y dataset compliant to X')
}
if( class( Y ) == 'mfData' )
{
if( X$L != Y$L )
stop( 'You have to provide a Y dataset with same number of components as X')
list = NULL
for( i in 1 : X$L )
{
list = append( list,
lapply( i : X$L,
function( j ) cov_fun( X$fDList[[ i ]],
Y$fDList[[ j ]] ) ) )
}
# Setting up names for the covariances
if( ! is.null( names( X$fDList ) ) )
nmx = names( X$fDList )
else nmx = 1 : X$L
if( ! is.null( names( Y$fDList ) ) )
nmy = names( Y$fDList )
else nmy = 1 : Y$L
nmlist = NULL
for( i in 1 : X$L )
{
nmlist = append( nmlist,
sapply( i : X$L,
function( j ) ( paste( nmx[ i ],
'_',
nmy[ j ],
sep = '' ) ) ) )
}
names( list ) = nmlist
return( list )
} else if( class( Y ) == 'fData' )
{
return( sapply( X = X$fDList, FUN = cov_fun, Y,
simplify = FALSE, USE.NAMES = FALSE ) )
}
} else {
list = NULL
for( i in 1 : X$L )
{
list = append( list,
lapply( i : X$L,
function( j ) cov_fun( X$fDList[[ i ]],
X$fDList[[ j ]] ) ) )
}
# Setting up names for the covariances
if( ! is.null( names( X$fDList ) ) )
nm = names( X$fDList )
else nm = 1 : X$L
nmlist = NULL
for( i in 1 : X$L )
{
nmlist = append( nmlist,
sapply( i : X$L,
function( j ) ( paste( nm[ i ],
'_',
nm[ j ],
sep = '' ) ) ) )
}
names( list ) = nmlist
return( list )
}
}
#' Specialized method to plot \code{Cov} objects
#'
#' This function performs the plot of an object of class \code{Cov}, i.e. a
#' covariance or cross-covariance function.
#'
#' @details
#' It builds above the function \code{graphics::image}, therefore any additional
#' parameter suitable for \code{graphics::image} will also be suitable as \code{...}
#' argument to \code{plot.Cov}.
#'
#' @param x the covariance or cross-covariance function of class \code{Cov}.
#' @param ... additional graphical parameters to be used in plotting functions
#'
#' @seealso \code{\link{cov_fun}}
#'
#' @examples
#'
#' # Generating a univariate functional dataset
#' N = 1e2
#'
#' P = 1e2
#' t0 = 0
#' t1 = 1
#'
#' time_grid = seq( t0, t1, length.out = P )
#'
#' Cov = exp_cov_function( time_grid, alpha = 0.3, beta = 0.4 )
#'
#' D1 = generate_gauss_fdata( N, centerline = sin( 2 * pi * time_grid ), Cov = Cov )
#'
#' fD1 = fData( time_grid, D1 )
#'
#' # Computing the covariance function of fD1
#'
#' plot( cov_fun( fD1 ), main = 'Covariance function', xlab = 'time', ylab = 'time' )
#'
#' @export
plot.Cov = function( x, ... )
{
graphics::image( x$values, ... )
}
#'
#' Median of a univariate functional dataset
#'
#' This method computes the sample median of a univariate functional dataset
#' based on a definition of depth for univariate functional data.
#'
#' Provided a definition of functional depth for univariate data,
#' the corresponding median (i.e. the deepest element of the sample) is returned as the desired median.
#' This method does \bold{not} coincide with the computation of the
#' cross-sectional median of the sample of the point-by-point measurements on
#' the grid. Hence, the sample median is a member of the dataset provided.
#'
#' @param fData the univariate functional dataset whose
#' median is required, in form of \code{fData} object.
#' @param type a string specifying the name of the function defining the depth
#' for univariate data to be used. It must be a valid name of a function defined
#' in the current environment, default is \code{MBD}.
#' @param ... additional parameters to be used in the function specified by
#' argument \code{type}.
#'
#' @return The function returns a \code{fData} object containing the desired
#' sample median.
#'
#' @seealso \code{\link{fData}}, \code{\link{mean.fData}},
#' \code{\link{median_mfData}}
#'
#' @examples
#'
#' N = 1e2
#' P = 1e2
#' grid = seq( 0, 1, length.out = P )
#'
#' # Generating a gaussian functional sample with desired mean
#' # Being the distribution symmetric, the sample mean and median are coincident
#' target_median = sin( 2 * pi * grid )
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.2 )
#' fD = fData( grid, generate_gauss_fdata( N,
#' centerline = target_median,
#' Cov = C ) )
#'
#' # Graphical representation of the mean
#' plot( fD )
#' plot( median_fData( fD ), col = 'black', lwd = 2, lty = 2, add = TRUE )
#'
#' @export
median_fData = function( fData, type = 'MBD', ... )
{
Depths = eval( parse( text = paste( type, '( fData$values, ... )', sep = '' ) ) )
return( fData( seq( fData$t0, fData$tP, length.out = fData$P ),
fData$values[ which.max( Depths ), ] ) )
}
#'
#' Median of a multivariate functional dataset
#'
#' This method computes the sample median of a multivariate functional dataset
#' based on a definition of depth for multivariate functional data.
#'
#' Provided a definition of functional depth for multivariate data,
#' the corresponding median (i.e. the deepest element of the sample) is returned
#' as the desired median.
#' This method does \bold{not} coincide with the computation of the
#' cross-sectional median of the sample of the point-by-point measurements on
#' the grid. Hence, the sample median is a member of the dataset provided.
#'
#' @param mfData the multivariate functional dataset whose
#' median is required, in form of \code{mfData} object.
#' @param type a string specifying the name of the function defining the depth
#' for multivariate data to be used. It must be a valid name of a function
#' defined in the current environment, default is \code{multiMBD}.
#' @param ... additional parameters to be used in the function specified by
#' argument \code{type}.
#'
#' @return The function returns a \code{mfData} object containing the desired
#' sample median.
#'
#' @seealso \code{\link{mfData}}, \code{\link{mean.mfData}},
#' \code{\link{median_fData}}
#'
#' @examples
#'
#' N = 1e2
#' L = 3
#' P = 1e2
#' grid = seq( 0, 1, length.out = P )
#'
#' # Generating a gaussian functional sample with desired mean
#' # Being the distribution symmetric, the sample mean and median are coincident
#' target_median = sin( 2 * pi * grid )
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.2 )
#'
#' # Strongly dependent components
#' correlations = c( 0.9, 0.9, 0.9 )
#' mfD = mfData( grid,
#' generate_gauss_mfdata( N, L,
#' correlations = correlations,
#' centerline = matrix( target_median,
#' nrow = 3,
#' ncol = P,
#' byrow = TRUE ),
#' listCov = list( C, C, C ) )
#' )
#'
#' med_mfD = median_mfData( mfD, type = 'multiMBD', weights = 'uniform' )
#'
#' # Graphical representation of the mean
#' oldpar <- par(mfrow = c(1, 1))
#' par(mfrow = c(1, L))
#'
#' for(iL in 1:L)
#' {
#' plot(mfD$fDList[[iL]])
#' plot(
#' med_mfD$fDList[[iL]],
#' col = 'black',
#' lwd = 2,
#' lty = 2,
#' add = TRUE
#' )
#' }
#'
#' par(oldpar)
#'
#' @export
median_mfData = function( mfData, type = 'multiMBD', ... )
{
Depths = eval( parse( text = paste( type, '( toListOfValues( mfData ), ... )',
sep = '' ) ) )
return( mfData( seq( mfData$t0, mfData$tP, length.out = mfData$P ),
lapply( toListOfValues( mfData ), `[`,
which.max( Depths ), ) ) )
}
#' Operator \code{sub-.fData} to subset \code{fData} objects
#'
#' This method provides an easy and natural way to subset a functional dataset
#' stored in a \code{fData} object, without having to deal with the inner
#' representation of \code{fData} class.
#'
#' @param fD the univariate functional dataset in form of \code{fData} object.
#' @param i a valid expression to subset rows ( observations ) of the univariate
#' functional dataset.
#' @param j a valid expression to subset columns ( measurements over the grid )
#' of the univariate functional dataset (must be contiguous).
#' @param as_fData logical flag to specify whether the output should be returned
#' as an \code{fData} object containing the required subset or as a matrix of
#' values, default is \code{TRUE}.
#'
#' @return The method returns either an \code{fData} object ( if \code{as_fData
#' = TRUE } ) or a \code{matrix} ( if \code{as_fData = FALSE } ) containing the
#' required subset ( both in terms of observations and measurement points ) of
#' the univariate functional dataset.
#'
#' @name sub-.fData
#'
#' @seealso \code{\link{fData}}
#'
#' @examples
#'
#' N = 20
#' P = 1e2
#'
#' # One dimensional grid
#' grid = seq( 0, 1, length.out = P )
#'
#' # Generating an exponential covariance function (see related help for more
#' # information )
#' C = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
#'
#' # Generating a synthetic dataset with a gaussian distribution and
#' # required mean and covariance function:
#' fD = fData( grid,
#' generate_gauss_fdata( N,
#' centerline = sin( 2 * pi * grid ),
#' Cov = C ) )
#'
#' dev.new()
#' oldpar <- par(mfrow = c(1, 1))
#' par(mfrow = c(2, 2))
#'
#' # Original data
#' plot(fD)
#'
#' # Subsetting observations
#' plot(fD[c(1, 2, 3), , as_fData = TRUE])
#'
#' # Subsetting measurements
#' plot(fD[, 1:30])
#'
#' # Subsetting both observations and measurements
#' plot(fD[1:10, 50:P])
#'
#' par(oldpar)
#'
#' # Subsetting both observations and measurements but returning a matrix
#' fD[1:10, 50:P, as_fData = FALSE]
#'
#' @export
"[.fData" = function( fD, i, j, as_fData = TRUE )
{
if( as_fData == TRUE )
{
if( missing( j ) )
{
return( structure( list( t0 = fD$t0,
tP = fD$tP,
h = fD$h,
P = fD$P,
N = ifelse( missing( i ), fD$N, length( i ) ),
values = toRowMatrixForm( fD$values[ i, ] ) ),
class = c( 'fData' ) ) )
} else {
if( is.logical( j ) ){
if (sum(abs(diff(j)) > 1)){
stop('You must specify a contiguous grid')
}
return( structure( list( t0 = fD$t0 + ( min( which( j ) ) - 1 ) * fD$h,
tP = fD$t0 + ( max( which( j ) ) - 1 ) * fD$h,
h = fD$h,
P = length( which( j ) ),
N = ifelse( missing( i ), fD$N, length( i ) ),
values = toRowMatrixForm( fD$values[ i, j ] ) ),
class = c( 'fData' ) ) )
} else if( is.numeric( j ) ){
if (sum(abs(diff(j)) > 1)){
stop('You must specify a contiguous grid')
}
return( structure( list( t0 = fD$t0 + ( min( j ) - 1 ) * fD$h,
tP = fD$t0 + ( max( j ) - 1 ) * fD$h,
h = fD$h,
P = length( j ),
N = ifelse( missing( i ), fD$N, length( i ) ),
values = toRowMatrixForm( fD$values[ i, j ] ) ),
class = c( 'fData' ) ) )
}
}
} else {
return( fD$values[ i, j ] )
}
}
#' Operator \code{sub-.mfData} to subset \code{mfData} objects
#'
#' This method provides an easy and natural way to subset a multivariate
#' functional dataset stored in a \code{mfData} object, without having to
#' deal with the inner representation of \code{mfData} class.
#'
#' @param mfD the multivariate functional dataset in form of \code{mfData} object.
#' @param i a valid expression to subset rows ( observations ) of the univariate
#' functional dataset.
#' @param j a valid expression to subset columns ( measurements over the grid )
#' of the univariate functional dataset (must be contiguous).
#'
#' @return The method returns and \code{mfData} object containing the
#' required subset ( both in terms of observations and measurement points ) of
#' the multivariate functional dataset.
#'
#' @name sub-.mfData
#'
#' @seealso \code{\link{mfData}}
#'
#' @examples
#' # Defining parameters
#' N = 1e2
#'
#' P = 1e3
#'
#' t0 = 0
#' t1 = 1
#'
#' # Defining the measurement grid
#' grid = seq( t0, t1, length.out = P )
#'
#' # Generating an exponential covariance matrix to be used in the simulation of
#' # the functional datasets (see the related help for details)
#' C = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
#'
#' # Simulating the measurements of two univariate functional datasets with
#' # required center and covariance function
#' Data_1 = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C )
#' Data_2 = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C )
#'
#' # Building the mfData object
#' mfD = mfData( grid, list( Data_1, Data_2 ) )
#'
#' # Subsetting the first 10 elements and 10 time points
#' mfD[1:10, 1:10]
#'
#' # Subsetting only observations
#' mfD[1:10,]
#'
#' # Subsetting only time points (contiguously)
#' mfD[,1:10]
#'
#' @export
#'
"[.mfData" = function(mfD, i, j)
{
if(missing(j)){
j = 1:mfD$P
}
if(missing(i))
{
i=1:mfD$N
}
return(as.mfData(lapply(mfD$fDList, function(x)x[i, j])))
}
#' Manipulation of \code{mfData} list of values
#'
#' This utility function manipulates a \code{mfData} object in order to extract
#' from the list of its \code{fData} objects ( namely, \code{mfData$fDList} )
#' the measurement values of each component and stores them into a list.
#'
#' Given a \code{mfData} of \code{L} components, the function is equivalent to
#' \code{ list( mfData$fDList[[ 1 ]]$values,} \code{..., }
#' \code{ mfData$fDList[[ L ]]$values ) }.
#'
#' @param mfData the multivariate functional dataset in form of \code{mfData}
#' object.
#'
#' @return The function returns the list of values of each \code{fData} object
#' representing the components of \code{mfData}.
#'
#' @seealso \code{\link{mfData}}
#'
#' @examples
#'
#' grid = seq( 0, 1, length.out = 5 )
#'
#' D_1 = matrix( 1 : 5, nrow = 10, ncol = 5, byrow = TRUE )
#' D_2 = 2 * D_1
#' D_3 = 3 * D_1
#'
#' mfD = mfData( grid, list( D_1, D_2, D_3 ) )
#' mfD
#'
#' toListOfValues( mfD )
#'
#' @export
#'
toListOfValues = function( mfData )
{
eval( parse( text = paste( 'list(', paste( 'mfData$fDList[[ ',
1 : mfData$L, ' ]]$values',
sep = '', collapse = ', ' ), ')' ) ) )
}
#' Unfolding a univariate functional dataset
#'
#' This function operates on a univariate functional dataset and transforms its
#' observations unfolding their values and turning them into monotone functions.
#'
#' Each function of the \code{fData} object is transformed into a non-monotone
#' function into a monotone function by ``unfolding'' it at any of its maxima.
#' For more details about the definition of the transform, see the reference.
#'
#' @param fData the univariate functional dataset in form of \code{fData} object.
#'
#' @return The function returns an \code{fData} object whose observations are
#' the unfolded version of the corresponding observations in the argument
#' \code{fData}.
#'
#' @references Arribas-Gil, A. and Romo, J. (2012). Robust depth-based estimation
#' in the time warping model, \emph{Biostatistics}, 13 (3), 398--414.
#'
#' @seealso \code{\link{fData}}, \code{\link{warp}}
#'
#' @examples
#' P = 1e3
#'
#' time_grid = seq( 0, 1, length.out = P )
#'
#' D = matrix( c( sin( 2 * pi * time_grid ),
#' cos( 2 * pi * time_grid ),
#' sin( 10 * pi * time_grid ) * time_grid + 2 ),
#' ncol = P, nrow = 3, byrow = TRUE )
#'
#' # Functional dataset
#' fD = fData( time_grid, D )
#'
#' # Unfolded version
#' fD_unfold = unfold( fD )
#'
#' dev.new()
#' oldpar <- par(mfrow = c(1, 1))
#' par(mfrow = c(1, 2))
#'
#' plot(fD, main = 'Original data')
#' plot(fD_unfold, main = 'Unfolded data')
#'
#' par(oldpar)
#'
#' @export
unfold = function( fData )
{
return( fData( seq( fData$t0, fData$tP, length.out = fData$P ),
t( apply( fData$values,
1,
function( x )( c( x[ 1 ],
x[ 1 ] +
cumsum( abs( diff( x ) ) ) ) ) )
) ) )
}
#' Warp elements of a univariate functional dataset
#'
#' This function carries out the warping of elements of a univariate functional
#' dataset by using a set of pre-computed warping functions.
#'
#' Given a univariate functional dataset \eqn{X_1(t), \ldots, X_N(t)} and a set
#' of warping functions \eqn{H_1(t), \ldots, H_N(t)}, such that:
#' \deqn{ H_i : s \longrightarrow t = H_i(s), \quad \forall i = 1, \ldots, N,}
#' where \eqn{s} spans the warped (or registered) grid and \eqn{t} spans the
#' original grid, the function computes the warping given by the following
#' composition:
#' \deqn{ X_1 \circ H_1(t), \ldots, X_N \circ H_N(t).}
#'
#' @param fData the functional dataset whose observations must be warped in
#' form of \code{fData} object.
#' @param warpings the warping functions \eqn{H_1, \ldots, H_N}, in form of
#' \code{fData} object, defined over the registered/warped grid.
#'
#' @return The function returns the univariate functional dataset of warped
#' functions, in form of \code{fData} object.
#'
#' @seealso \code{\link{fData}}
#'
#' @examples
#'
#' set.seed( 1618033 )
#'
#' N = 30
#'
#' t0 = 0
#' t1 = 1
#' P = 1e3 + 1
#'
#' time_grid = seq( t0, t1, length.out = P )
#'
#' means = round( runif( N,
#' t0 + (t1 - t0) / 8,
#' t1 - (t1 - t0) / 8 ), 3 )
#'
#' Data = matrix( sapply( means,
#' function( m )( dnorm( time_grid, mean = m, sd = 0.05 ) ) ),
#' ncol = P, nrow = N, byrow = TRUE )
#'
#' fD = fData( time_grid, Data )
#'
#' # Piecewise linear warpings
#' template_warping = function( m )( c( time_grid[ time_grid <= 0.5 ] * m / 0.5,
#' ( time_grid[ time_grid > 0.5 ]
#' - 0.5 ) * (1 - m ) / 0.5 + m ) )
#'
#'
#' warpings = matrix( sapply( means, template_warping ),
#' ncol = P,
#' nrow = N, byrow = TRUE )
#'
#' wfD = fData( time_grid, warpings )
#'
#' fD_warped = warp( fD, wfD )
#'
#' dev.new()
#' oldpar <- par(mfrow = c(1, 1))
#' par(mfrow = c(1, 3))
#'
#' plot( fD,
#' main = 'Unregistered functions', xlab = 'actual grid', ylab = 'values' )
#' plot( wfD,
#' main = 'Warping functions', xlab = 'registered grid',
#' ylab = 'actual grid' )
#' plot( fD_warped,
#' main = 'Warped functions', xlab = 'registered grid',
#' ylab = 'values' )
#'
#' par(oldpar)
#'
#' @export
warp = function( fData, warpings )
{
if(
fData$N != warpings$N
)
{
stop( ' Error in warp: you have to provide a warping for each functional
observations' )
}
if( any( diff( warpings$values[ , 1 ] ) > .Machine$double.eps ) |
any( diff( warpings$values[ , fData$P ] ) > .Machine$double.eps ) )
{
stop( ' Error in warp: you have to prescribe warpings with same starting
point and ending point (at least up to .Machine$double.eps = ',
.Machine$double.eps, ')' )
}
time_grid = seq( fData$t0,
fData$tP,
length.out = fData$P )
return( fData( seq( warpings$t0,
warpings$tP,
length.out = warpings$P ),
t( sapply( 1 : fData$N,
function( i )(
stats::approx(
time_grid,
fData$values[i,],
xout = warpings$values[i,],
yright = fData$values[i, fData$P],
yleft = fData$values[i, 1]
)$y ) ) ) ) )
}
#' Converting object to \code{mfData} class
#'
#' This S3 method provides a way to convert some objects to the class
#' \code{mfData}, thus obtaining a multivariate functional dataset.
#'
#' @param ... additional parameters.
#'
#' @return The function returns a \code{mfData} object, obtained starting from
#' argument \code{x}.
#'
#' @export
#'
as.mfData = function( x, ... )
{
UseMethod( 'as.mfData', x )
}
#'@rdname as.mfData
#'
#' @param x a list of univariate functional datasets, provided in form of
#' \code{fData} objects.
#'
#' @examples
#'
#' grid = seq( 0, 1, length.out = 100 )
#'
#' fD_1 = fData( grid, sin( 2 * pi * grid ) )
#' fD_2 = fData( grid, cos( 2 * pi * grid ) )
#'
#' plot( as.mfData( list( fD_1, fD_2 ) ) )
#'
#' @export
as.mfData.list = function( x, ... )
{
if( any( sapply( x, class ) != 'fData' ) )
{
stop( ' Error in as.mfData.list: you have to provide a list of fData
objects')
}
if( any( diff( sapply( x,
function( y ) ( y$t0 ) ) ) >= .Machine$double.eps ) |
any( diff( sapply( x,
function( y ) ( y$tP ) ) ) >= .Machine$double.eps ) |
any( diff( sapply( x,
function( y ) ( y$P ) ) ) >= .Machine$double.eps ) |
any( diff( sapply( x,
function( y ) ( y$N ) ) ) >= .Machine$double.eps ) )
{
stop( ' Error in as.mfData.list: you have provided fData list elements with
different parameters')
}
return( mfData( seq( x[[ 1 ]]$t0,
x[[ 1 ]]$tP,
length.out = x[[ 1 ]]$P ),
eval( parse( text = paste( 'list(',
paste( 'x[[ ',
1 : length( x ),
' ]]$values',
sep = '', collapse = ', ' ),
')' ) ) ) ) )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.