#source("misc_code/load.packages.R")
#source("R/functions.R")
pathA <-"C:/Users/audre/Documents/BUGSnet/"
sepA <- "/"
pathJ <- "C:\\Users\\justi\\Desktop\\Lighthouse\\nmapackage\\BUGSnet\\"
sepJ <- "\\"
path <- pathA
sep <- sepA
source(paste0(path,"misc_code",sep,"load.packages.R"))
library(devtools)
library(roxygen2)
library(gemtc)
library(knitr)
library(readxl)
load_all(path = paste0(path,"R"))
regressor <- list(coefficient='exchangeable',
variable='stroke',
control="02")
gemtc_model <- mtc.model(atrialFibrillation,
type="regression",
link="logit",
likelihood="binom",
linearModel = "random",
regressor=regressor)
gemtc_results <- mtc.run(gemtc_model,
n.adapt = 1000,
n.iter = 50000,
thin = 1)
gemtc_leaguetable <- relative.effect.table(gemtc_results, covariate=0.1) %>% as.data.frame()
#write.csv(gemtc_leaguetable, "gemtc_leaguetable.csv")
conv_exp <- function(x) {
strsplit(x, split="[ \\(\\),]")[[1]][c(1,3,5)] %>% #split into mean, lower, upper
as.numeric %>%
exp() %>%
formatC(digits=2, format= "f") %>% #keep two decimals
str_c(c(" (", ", ", ")")) %>% #put back into string
paste0(collapse="") %>% #put back into string
return()
}
library(stringr)
for(i in 1:length(gemtc_leaguetable)){
for(j in (1:length(gemtc_leaguetable))[-i]){
gemtc_leaguetable[i,j] %<>% conv_exp()
}
}
write.csv(gemtc_leaguetable, "gemtc_leaguetable.csv")
forest(relative.effect(gemtc_results, "02"))
gemtc_ranks <- rank.probability(gemtc_results)
plot(gemtc_ranks)
plot(gemtc_ranks, beside=TRUE)
#png("gemtcplots%02d.png")
#plot(gemtc_results)
#graphics.off()
gemtc_model$code %>% cat
gemtc_model$om.scale^(-2)
(15*gemtc_model$om.scale)^(-2)
#plotCovariateEffect(gemtc_results,
# atrialFibrillation$data.ab$treatment %>% unique,
# atrialFibrillation$data.ab$treatment %>% unique,
# xlim=NULL,
# ylim=NULL,
# ask=dev.interactive(orNone=TRUE))
#rawdata <- atrialFibrillation$data.ab %>%
# left_join(atrialFibrillation$studies, by="study")
#dataprep <- data.prep(arm.data = rawdata,
# varname.t = "treatment",
# varname.s = "study")
data(afib)
dataprep <- data.prep(arm.data = afib,
varname.t = "treatment",
varname.s = "study")
random_effects_model <- nma.model(data=dataprep,
outcome="events",
N="sampleSize",
reference="02",
family="binomial",
link="logit",
effects="random",
covariate="stroke",
prior.beta="EXCHANGEABLE")
bugsnet_results <- nma.run(random_effects_model,
n.iter=10000,
n.adapt=1000,
n.burnin=1000,
monitor=c("d"))
random_effects_model$bugs %>% cat
#png("bugsnetplots%02d.png", width=2000, height=2000)
par(mar=c(1,1,1,1))
nma.trace(bugsnet_results, thin=100)
#graphics.off()
random_effects_fit <- nma.fit(bugsnet_results, main = "Random Effects Model" )
random_effects_fit$DIC
random_effects_fit$pD
random_effects_fit$pmdev
random_effects_fit$leverage
sucra.out <- nma.rank(bugsnet_results, largerbetter=FALSE, cov.value=0.1)
sucra.out$sucraplot
sucra.out$rankogram
nma.forest(bugsnet_results,
comparator="02",
central.tdcy = "median",
cov.value=0.1)
bugsnet_league <- nma.league(bugsnet_results,
central.tdcy = "median",
order = as.vector(t(dataprep$treatments)),
cov.value=0.1,
log.scale = FALSE)
write.csv(bugsnet_league$table, "bugsnet_leaguetable.csv")
nma.regplot(bugsnet_results, x.range=c(0.1,1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.