##' The iptw method or importance weighting method estimates the ADRF by
##' weighting the data with stabilized or non-stabilized weights.
##'
##' @param Y is the the name of the outcome variable contained in \code{data}.
##' @param treat is the name of the treatment variable contained in
##' \code{data}.
##' @param treat_formula an object of class "formula" (or one that can be
##' coerced to that class) that regresses \code{treat} on a linear combination
##' of \code{X}: a symbolic description of the model to be fitted.
##' @param numerator_formula an object of class "formula" (or one that can be
##' coerced to that class) that regresses \code{treat} on a linear combination
##' of \code{X}: a symbolic description of the model to be fitted. i.e.
##' \code{treat ~ 1}.
##' @param data is a dataframe containing \code{Y}, \code{treat}, and
##' \code{X}.
##' @param degree is 1 for linear and 2 for quadratic outcome model.
##' @param treat_mod a description of the error distribution to be used in the
##' model for treatment. Options include: \code{"Normal"} for normal model,
##' \code{"LogNormal"} for lognormal model, \code{"Sqrt"} for square-root transformation
##' to a normal treatment, \code{"Poisson"} for Poisson model,
##' \code{"NegBinom"} for negative binomial model, \code{"Gamma"} for gamma
##' model, \code{"Binomial"} for binomial model, \code{"Ordinal"} for ordinal model,
##' \code{"Multinomial"} for multinomial model.
##' @param link_function specifies the link function between the variables in
##' numerator or denominator and exposure, respectively.
##' For \code{treat_mod = "Gamma"} (fitted using glm) alternatives are "log" or "inverse".
##' For \code{treat_mod = "Binomial"} (fitted using glm) alternatives are "logit", "probit", "cauchit", "log" and "cloglog".
##' For \code{treat_mod = "Multinomial"} this argument is ignored, and
##' multinomial logistic regression models are always used (fitted using multinom).
##' For \code{treat_mod = "Ordinal"} (fitted using polr) alternatives are "logit", "probit", "cauchit", and "cloglog".
##' @param ... additional arguments to be passed to the low level treatment regression fitting functions.
##'
##' @return \code{iptw_est} returns an object of class "causaldrf", a list that contains the following components:
##' \item{param}{parameter estimates for a iptw fit.}
##' \item{t_mod}{the result of the treatment model fit.}
##' \item{num_mod}{the result of the numerator model fit.}
##' \item{weights}{the estimated weights.}
##' \item{weight_data}{the weights.}
##' \item{out_mod}{the outcome model.}
##'
##' @references Schafer, J.L., Galagate, D.L. (2015). Causal inference with a
##' continuous treatment and outcome: alternative estimators for parametric
##' dose-response models. \emph{Manuscript in preparation}.
##'
##' @export
##'
iptw_est <-
function (Y,
treat,
treat_formula,
numerator_formula,
data,
degree,
treat_mod,
link_function,
...)
{
outcomeData <- data.frame(Y = data[, as.character(Y)],
treat = data[, as.character(treat)])
df <- cbind(data[, which(names(data) %in% Y)],
data[, which(names(data) %in% treat)],
data[,-which(names(data) %in% c(Y, treat))])
colnames(df)[1:2] <- c(Y, treat)
balanceData <- df[,-1]
formula_t <- treat_formula
if (treat_mod == "Poisson") {
samp <- balanceData
result2 <- stats::glm(formula_t, family = "poisson",
data = samp, ...)
cond_mean <- result2$fitted.values
samp$gps_vals <-
dpois(x = outcomeData$treat, lambda = cond_mean)
result1 <- glm(numerator_formula,
family = "poisson",
data = samp,
...)
cond_mean_num <- result1$fitted.values
samp$num_weight <-
dpois(x = outcomeData$treat, lambda = cond_mean_num)
est_import_wt <- samp$num_weight / samp$gps_vals
}
else if (treat_mod == "NegBinom") {
samp <- balanceData
result2 <- MASS::glm.nb(formula_t, link = log, data = samp,
...)
cond_mean <- result2$fitted.values
cond_var <- cond_mean + cond_mean ^ 2 / result2$theta
prob_nb_est <- (cond_var - cond_mean) / cond_var
samp$gps_vals <-
dnbinom(
x = outcomeData$treat,
size = result2$theta,
mu = result2$fitted.values,
log = FALSE
)
result1 <- MASS::glm.nb(numerator_formula, link = link_function,
data = samp, ...)
cond_mean_num <- result1$fitted.values
cond_var_num <- cond_mean_num + cond_mean_num ^ 2 / result1$theta
prob_nb_est_num <- (cond_var_num - cond_mean_num) / cond_var_num
samp$num_weight <-
dnbinom(
x = outcomeData$treat,
size = result1$theta,
prob = prob_nb_est_num,
mu = result1$fitted.values,
log = FALSE
)
est_import_wt <- samp$num_weight / samp$gps_vals
}
else if (treat_mod == "Gamma") {
samp <- balanceData
result2 <- glm(formula_t,
family = Gamma(link = link_function),
data = samp,
...)
shape_gamma <- as.numeric(MASS::gamma.shape(result2)[1])
theta_given_X <- result2$fitted.values / shape_gamma
samp$gps_vals <- dgamma(outcomeData$treat, shape = shape_gamma,
scale = theta_given_X)
result1 <- glm(numerator_formula,
family = Gamma(link = "log"),
data = samp,
...)
shape_gamma_2 <- as.numeric(MASS::gamma.shape(result1)[1])
theta_given_X_2 <- result1$fitted.values / shape_gamma
samp$num_weight <-
dgamma(outcomeData$treat, shape = shape_gamma_2,
scale = theta_given_X_2)
est_import_wt <- samp$num_weight / samp$gps_vals
}
else if (treat_mod == "LogNormal") {
samp <- balanceData
samp[, as.character(treat)] <- log(samp[, as.character(treat)])
result2 <- lm(formula_t, data = samp, ...)
samp$gps_vals <- dnorm(samp[, as.character(treat)],
mean = result2$fitted,
sd = summary(result2)$sigma)
result1 <- lm(numerator_formula, data = samp, ...)
samp$num_weight <- dnorm(samp[, as.character(treat)],
mean = result1$fitted,
sd = summary(result1)$sigma)
est_import_wt <- samp$num_weight / samp$gps_vals
}
else if (treat_mod == "Sqrt") {
samp <- balanceData
samp[, as.character(treat)] <- sqrt(samp[,
as.character(treat)])
result2 <- lm(formula_t, data = samp, ...)
samp$gps_vals <- dnorm(samp[, as.character(treat)],
mean = result2$fitted,
sd = summary(result2)$sigma)
result1 <- lm(numerator_formula, data = samp, ...)
samp$num_weight <- dnorm(samp[, as.character(treat)],
mean = result1$fitted,
sd = summary(result1)$sigma)
est_import_wt <- samp$num_weight / samp$gps_vals
}
else if (treat_mod == "Normal") {
samp <- balanceData
result2 <- lm(formula_t, data = samp, ...)
samp$gps_vals <- dnorm(outcomeData$treat,
mean = result2$fitted,
sd = summary(result2)$sigma)
result1 <- lm(numerator_formula, data = samp, ...)
samp$num_weight <-
dnorm(outcomeData$treat,
mean = result1$fitted,
sd = summary(result1)$sigma)
est_import_wt <- samp$num_weight / samp$gps_vals
}
else if (treat_mod == "Binomial") {
samp <- balanceData
if (link_function == "logit")
lf <- binomial(link = logit)
if (link_function == "probit")
lf <- binomial(link = probit)
if (link_function == "cauchit")
lf <- binomial(link = cauchit)
if (link_function == "log")
lf <- binomial(link = log)
if (link_function == "cloglog")
lf <- binomial(link = cloglog)
if (is.null(numerator_formula))
samp$num_weight <- 1
else {
result1 <- glm(numerator_formula,
family = lf,
data = samp,
...)
samp$num_weight[outcomeData$treat == 0] <-
1 - predict.glm(result1,
type = "response")[outcomeData$treat == 0]
samp$num_weight[outcomeData$treat == 1] <-
predict.glm(result1,
type = "response")[outcomeData$treat == 1]
result1$call$formula <- eval(numerator_formula)
result1$call$family <- link_function
result1$call$data <- eval(data)
}
result2 <- glm(formula_t, family = lf, data = samp,
...)
samp$denom_weight[outcomeData$treat == 0] <-
1 - predict.glm(result2,
type = "response")[outcomeData$treat == 0]
samp$denom_weight[outcomeData$treat == 1] <-
predict.glm(result2,
type = "response")[outcomeData$treat == 1]
result2$call$formula <- eval(formula_t)
result2$call$family <- link_function
result2$call$data <- eval(data)
est_import_wt <- samp$num_weight / samp$denom_weight
}
else if (treat_mod == "Multinomial") {
samp <- balanceData
if (is.null(numerator_formula))
samp$num_weight <- 1
else {
result1 <- nnet::multinom(formula = numerator_formula,
data = samp, ...)
pred1 <- as.data.frame(predict(result1, type = "probs"))
samp$num_weight <- vector("numeric", nrow(outcomeData))
for (i in 1:length(unique(outcomeData$treat)))
samp$num_weight[with(outcomeData,
treat == sort(unique(outcomeData$treat))[i])] <-
pred1[outcomeData$treat ==
sort(unique(outcomeData$treat))[i], i]
result1$call$formula <- eval(numerator_formula)
result1$call$data <- eval(data)
}
result2 <- nnet::multinom(formula = formula_t, data = samp,
...)
pred2 <- as.data.frame(predict(result2, type = "probs"))
samp$denom_weight <- vector("numeric", nrow(outcomeData))
for (i in 1:length(unique(outcomeData$treat)))
samp$denom_weight[with(outcomeData,
treat == sort(unique(outcomeData$treat))[i])] <-
pred2[outcomeData$treat ==
sort(unique(outcomeData$treat))[i], i]
result2$call$formula <- eval(formula_t)
result2$call$data <- eval(data)
est_import_wt <- samp$num_weight / samp$denom_weight
}
else if (treat_mod == "Ordinal") {
if (link_function == "logit")
m <- "logistic"
if (link_function == "probit")
m <- "probit"
if (link_function == "cloglog")
m <- "cloglog"
if (link_function == "cauchit")
m <- "cauchit"
if (is.null(numerator_formula))
samp$num_weight <- 1
else {
result1 <- MASS::polr(
formula = eval(numerator_formula),
data = samp,
method = m,
...
)
pred1 <- as.data.frame(predict(result1, type = "probs"))
samp$num_weight <- vector("numeric", nrow(outcomeData))
for (i in 1:length(unique(outcomeData$treat)))
samp$num_weight[with(outcomeData,
treat == sort(unique(outcomeData$treat))[i])] <-
pred1[outcomeData$treat ==
sort(unique(outcomeData$treat))[i], i]
result1$call$formula <- eval(numerator_formula)
result1$call$data <- eval(data)
result1$call$method <- m
}
result2 <- MASS::polr(
formula = eval(formula_t),
data = samp,
method = m,
na.action = na.fail,
...
)
pred2 <- as.data.frame(predict(result2, type = "probs"))
samp$denom_weight <- vector("numeric", nrow(outcomeData))
for (i in 1:length(unique(outcomeData$treat)))
samp$denom_weight[with(outcomeData,
treat == sort(unique(outcomeData$treat))[i])] <-
pred2[outcomeData$treat ==
sort(unique(outcomeData$treat))[i], i]
result2$call$formula <- eval(formula_t)
result2$call$data <- eval(data)
result2$call$method <- m
est_import_wt <- samp$num_weight / samp$denom_weight
}
else {
stop("Treatment model specified is not valid. Please try again.")
}
if (degree == 2) {
weight_dat <-
data.frame(outcomeData$Y,
outcomeData$treat,
outcomeData$treat ^ 2,
est_import_wt)
colnames(weight_dat) <-
c("Y", "treat", "treat.2", "est_import_wt")
design.weight <-
survey::svydesign(ids = ~ 1,
weights = ~ est_import_wt,
data = weight_dat)
import_weight_mod <- survey::svyglm(Y ~ treat + treat.2,
design = design.weight)
se_est_iptw_coef <- sqrt(diag(vcov(import_weight_mod)))
import_coefs <- coef(import_weight_mod)
}
else if (degree == 1) {
weight_dat <-
data.frame(outcomeData$Y, outcomeData$treat, est_import_wt)
colnames(weight_dat) <- c("Y", "treat", "est_import_wt")
design.weight <-
survey::svydesign(ids = ~ 1,
weights = ~ est_import_wt,
data = weight_dat)
import_weight_mod <-
survey::svyglm(Y ~ treat, design = design.weight)
se_est_iptw_coef <- sqrt(diag(vcov(import_weight_mod)))
import_coefs <- coef(import_weight_mod)
}
else {
stop("Error: degree needs to be 1 or 2")
}
z_object <- list(
param = import_coefs,
t_mod = result2,
num_mod = result1,
weights = est_import_wt,
weight_data = weight_dat,
out_mod = import_weight_mod
)
class(z_object) <- "causaldrf"
z_object
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.