#' @title covid_attgt
#'
#' @description Takes a "local" data.frame and computes
#' an estimate of a group time average treatment effect
#' and a corresponding influence function.
#'
#' The code relies on \code{this.data} having certain variables defined.
#' In particular, there should be an \code{id} column (individual identifier),
#' \code{G} (group identifier), \code{period} (time period), \code{name}
#' (equal to "pre" for pre-treatment periods and equal to "post" for post
#' treatment periods), \code{Y} (outcome).
#'
#' In our case, we call \code{pte::two_by_two_subset} which sets up the
#' data to have this format before the call to \code{covid_attgt}.
#'
#' @param gt_data data that is "local" to a particular group-time average
#' treatment effect
#' @param xformla one-sided formula for covariates used in the propensity score
#' and outcome regression models
#' @param ... extra function arguments; not used here
#'
#' @return attgt_if
#'
#' @export
covid_attgt <- function(gt_data, xformla, d_outcome=FALSE, d_covs_formula=~-1, ...) {
#-----------------------------------------------------------------------------
# handle covariates
#-----------------------------------------------------------------------------
# pre-treatment covariates
Xpre <- model.frame(xformla, data=subset(gt_data,name=="pre"))
# change in covariates
dX <- model.frame(d_covs_formula, data=subset(gt_data,name=="post")) - model.frame(d_covs_formula, data=subset(gt_data,name=="pre"))
if (ncol(dX) > 0) colnames(dX) <- paste0("d", colnames(dX))
# convert two period panel into one period
gt_data_outcomes <- tidyr::pivot_wider(gt_data[,c("D","id","period","name","Y")], id_cols=c(id, D),
names_from=c(name),
values_from=c(Y))
# merge outcome and covariate data
gt_dataX <- cbind.data.frame(gt_data_outcomes, Xpre, dX)
# treatment dummy variable
D <- gt_dataX$D
# post treatment outcome
Y <- gt_dataX$post
if (d_outcome) Y <- gt_dataX$post - gt_dataX$pre
# estimate attgt
# DRDID::drdid_panel is for panel data, but we can hack it
# to work in levels by just setting outcomes in "first period"
# to be equal to 0 for all units
gt_dataX <- droplevels(gt_dataX)
use_formula <- BMisc::toformula("", c(BMisc::rhs.vars(xformla), colnames(dX)))
covmat <- model.matrix(use_formula, data=gt_dataX)
covmat2 <- covmat[D==0,]
#www <- gt_dataX[D==0,]$.w
n_unt <- sum(1-D)
precheck_reg <- qr(t(covmat2)%*%covmat2/n_unt)
keep_covs <- precheck_reg$pivot[1:precheck_reg$rank]
covmat <- covmat[,keep_covs]
attgt <- DRDID::drdid_panel(y1=Y,
y0=rep(0,length(Y)),
D=D,
covariates=covmat,
inffunc=TRUE)
# return attgt
pte::attgt_if(attgt=attgt$ATT, inf_func=attgt$att.inf.func)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.