#' Nonparametric Intrinsic Variable Importance Estimates and Inference
#'
#' Compute estimates of and confidence intervals for nonparametric intrinsic
#' variable importance based on the population-level contrast between the oracle
#' predictiveness using the feature(s) of interest versus not.
#'
#' @param Y the outcome.
#' @param X the covariates. If \code{type = "average_value"}, then the exposure
#' variable should be part of \code{X}, with its name provided in \code{exposure_name}.
#' @param f1 the fitted values from a flexible estimation technique
#' regressing Y on X. A vector of the same length as \code{Y}; if sample-splitting
#' is desired, then the value of \code{f1} at each position should be the result
#' of predicting from a model trained without that observation.
#' @param f2 the fitted values from a flexible estimation technique
#' regressing either (a) \code{f1} or (b) Y on X withholding the columns in
#' \code{indx}. A vector of the same length as \code{Y}; if sample-splitting
#' is desired, then the value of \code{f2} at each position should be the result
#' of predicting from a model trained without that observation.
#' @param indx the indices of the covariate(s) to calculate variable
#' importance for; defaults to 1.
#' @param type the type of importance to compute; defaults to
#' \code{r_squared}, but other supported options are \code{auc},
#' \code{accuracy}, \code{deviance}, and \code{anova}.
#' @param run_regression if outcome Y and covariates X are passed to
#' \code{vimp_accuracy}, and \code{run_regression} is \code{TRUE},
#' then Super Learner will be used; otherwise, variable importance
#' will be computed using the inputted fitted values.
#' @param SL.library a character vector of learners to pass to
#' \code{SuperLearner}, if \code{f1} and \code{f2} are Y and X,
#' respectively. Defaults to \code{SL.glmnet}, \code{SL.xgboost},
#' and \code{SL.mean}.
#' @param alpha the level to compute the confidence interval at.
#' Defaults to 0.05, corresponding to a 95\% confidence interval.
#' @param delta the value of the \eqn{\delta}-null (i.e., testing if
#' importance < \eqn{\delta}); defaults to 0.
#' @param scale should CIs be computed on original ("identity") or
#' another scale? (options are "log" and "logit")
#' @param na.rm should we remove NAs in the outcome and fitted values
#' in computation? (defaults to \code{FALSE})
#' @param sample_splitting should we use sample-splitting to estimate the full and
#' reduced predictiveness? Defaults to \code{TRUE}, since inferences made using
#' \code{sample_splitting = FALSE} will be invalid for variables with truly zero
#' importance.
#' @param sample_splitting_folds the folds used for sample-splitting;
#' these identify the observations that should be used to evaluate
#' predictiveness based on the full and reduced sets of covariates, respectively.
#' Only used if \code{run_regression = FALSE}.
#' @param final_point_estimate if sample splitting is used, should the final point estimates
#' be based on only the sample-split folds used for inference (\code{"split"}, the default),
#' or should they instead be based on the full dataset (\code{"full"}) or the average
#' across the point estimates from each sample split (\code{"average"})? All three
#' options result in valid point estimates -- sample-splitting is only required for valid inference.
#' @param stratified if run_regression = TRUE, then should the generated
#' folds be stratified based on the outcome (helps to ensure class balance
#' across cross-validation folds)
#' @param C the indicator of coarsening (1 denotes observed, 0 denotes
#' unobserved).
#' @param Z either (i) NULL (the default, in which case the argument
#' \code{C} above must be all ones), or (ii) a character vector
#' specifying the variable(s) among Y and X that are thought to play a
#' role in the coarsening mechanism. To specify the outcome, use \code{"Y"}; to
#' specify covariates, use a character number corresponding to the desired
#' position in X (e.g., \code{"1"}).
#' @param ipc_scale what scale should the inverse probability weight correction be applied on (if any)?
#' Defaults to "identity". (other options are "log" and "logit")
#' @param ipc_weights weights for the computed influence curve (i.e.,
#' inverse probability weights for coarsened-at-random settings).
#' Assumed to be already inverted (i.e., ipc_weights = 1 / [estimated
#' probability weights]).
#' @param ipc_est_type the type of procedure used for coarsened-at-random
#' settings; options are "ipw" (for inverse probability weighting) or
#' "aipw" (for augmented inverse probability weighting).
#' Only used if \code{C} is not all equal to 1.
#' @param scale_est should the point estimate be scaled to be greater than or equal to 0?
#' Defaults to \code{TRUE}.
#' @param nuisance_estimators_full (only used if \code{type = "average_value"})
#' a list of nuisance function estimators on the
#' observed data (may be within a specified fold, for cross-fitted estimates).
#' Specifically: an estimator of the optimal treatment rule; an estimator of the
#' propensity score under the estimated optimal treatment rule; and an estimator
#' of the outcome regression when treatment is assigned according to the estimated optimal rule.
#' @param nuisance_estimators_reduced (only used if \code{type = "average_value"})
#' a list of nuisance function estimators on the
#' observed data (may be within a specified fold, for cross-fitted estimates).
#' Specifically: an estimator of the optimal treatment rule; an estimator of the
#' propensity score under the estimated optimal treatment rule; and an estimator
#' of the outcome regression when treatment is assigned according to the estimated optimal rule.
#' @param exposure_name (only used if \code{type = "average_value"}) the name of
#' the exposure of interest; binary, with 1 indicating presence of the exposure and
#' 0 indicating absence of the exposure.
#' @param bootstrap should bootstrap-based standard error estimates be computed?
#' Defaults to \code{FALSE} (and currently may only be used if
#' \code{sample_splitting = FALSE}).
#' @param b the number of bootstrap replicates (only used if \code{bootstrap = TRUE}
#' and \code{sample_splitting = FALSE}); defaults to 1000.
#' @param boot_interval_type the type of bootstrap interval (one of \code{"norm"},
#' \code{"basic"}, \code{"stud"}, \code{"perc"}, or \code{"bca"}, as in
#' \code{\link{boot}{boot.ci}}) if requested. Defaults to \code{"perc"}.
#' @param clustered should the bootstrap resamples be performed on clusters
#' rather than individual observations? Defaults to \code{FALSE}.
#' @param cluster_id vector of the same length as \code{Y} giving the cluster IDs
#' used for the clustered bootstrap, if \code{clustered} is \code{TRUE}.
#' @param ... other arguments to the estimation tool, see "See also".
#'
#' @return An object of classes \code{vim} and the type of risk-based measure.
#' See Details for more information.
#'
#' @details We define the population variable importance measure (VIM) for the
#' group of features (or single feature) \eqn{s} with respect to the
#' predictiveness measure \eqn{V} by
#' \deqn{\psi_{0,s} := V(f_0, P_0) - V(f_{0,s}, P_0),} where \eqn{f_0} is
#' the population predictiveness maximizing function, \eqn{f_{0,s}} is the
#' population predictiveness maximizing function that is only allowed to access
#' the features with index not in \eqn{s}, and \eqn{P_0} is the true
#' data-generating distribution. VIM estimates are obtained by obtaining
#' estimators \eqn{f_n} and \eqn{f_{n,s}} of \eqn{f_0} and \eqn{f_{0,s}},
#' respectively; obtaining an estimator \eqn{P_n} of \eqn{P_0}; and finally,
#' setting \eqn{\psi_{n,s} := V(f_n, P_n) - V(f_{n,s}, P_n)}.
#'
#' In the interest of transparency, we return most of the calculations
#' within the \code{vim} object. This results in a list including:
#' \describe{
#' \item{s}{the column(s) to calculate variable importance for}
#' \item{SL.library}{the library of learners passed to \code{SuperLearner}}
#' \item{type}{the type of risk-based variable importance measured}
#' \item{full_fit}{the fitted values of the chosen method fit to the full data}
#' \item{red_fit}{the fitted values of the chosen method fit to the reduced data}
#' \item{est}{the estimated variable importance}
#' \item{naive}{the naive estimator of variable importance (only used if \code{type = "anova"})}
#' \item{eif}{the estimated efficient influence function}
#' \item{eif_full}{the estimated efficient influence function for the full regression}
#' \item{eif_reduced}{the estimated efficient influence function for the reduced regression}
#' \item{se}{the standard error for the estimated variable importance}
#' \item{ci}{the \eqn{(1-\alpha) \times 100}\% confidence interval for the variable importance estimate}
#' \item{test}{a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test}
#' \item{p_value}{a p-value based on the same test as \code{test}}
#' \item{full_mod}{the object returned by the estimation procedure for the full data regression (if applicable)}
#' \item{red_mod}{the object returned by the estimation procedure for the reduced data regression (if applicable)}
#' \item{alpha}{the level, for confidence interval calculation}
#' \item{sample_splitting_folds}{the folds used for sample-splitting (used for hypothesis testing)}
#' \item{y}{the outcome}
#' \item{ipc_weights}{the weights}
#' \item{cluster_id}{the cluster IDs}
#' \item{mat}{a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value}
#' }
#'
#' @examples
#' # generate the data
#' # generate X
#' p <- 2
#' n <- 100
#' x <- data.frame(replicate(p, stats::runif(n, -1, 1)))
#'
#' # apply the function to the x's
#' f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
#' smooth <- apply(x, 1, function(z) f(z))
#'
#' # generate Y ~ Bernoulli (smooth)
#' y <- matrix(rbinom(n, size = 1, prob = smooth))
#'
#' # set up a library for SuperLearner; note simple library for speed
#' library("SuperLearner")
#' learners <- c("SL.glm")
#'
#' # using Y and X; use class-balanced folds
#' est_1 <- vim(y, x, indx = 2, type = "accuracy",
#' alpha = 0.05, run_regression = TRUE,
#' SL.library = learners, cvControl = list(V = 2),
#' stratified = TRUE)
#'
#' # using pre-computed fitted values
#' set.seed(4747)
#' V <- 2
#' full_fit <- SuperLearner::CV.SuperLearner(Y = y, X = x,
#' SL.library = learners,
#' cvControl = list(V = 2),
#' innerCvControl = list(list(V = V)))
#' full_fitted <- SuperLearner::predict.SuperLearner(full_fit)$pred
#' # fit the data with only X1
#' reduced_fit <- SuperLearner::CV.SuperLearner(Y = full_fitted,
#' X = x[, -2, drop = FALSE],
#' SL.library = learners,
#' cvControl = list(V = 2, validRows = full_fit$folds),
#' innerCvControl = list(list(V = V)))
#' reduced_fitted <- SuperLearner::predict.SuperLearner(reduced_fit)$pred
#'
#' est_2 <- vim(Y = y, f1 = full_fitted, f2 = reduced_fitted,
#' indx = 2, run_regression = FALSE, alpha = 0.05,
#' stratified = TRUE, type = "accuracy",
#' sample_splitting_folds = get_cv_sl_folds(full_fit$folds))
#'
#' @seealso \code{\link[SuperLearner]{SuperLearner}} for specific usage of the
#' \code{SuperLearner} function and package.
#' @export
vim <- function(Y = NULL, X = NULL, f1 = NULL, f2 = NULL, indx = 1,
type = "r_squared", run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
alpha = 0.05, delta = 0, scale = "identity", na.rm = FALSE,
sample_splitting = TRUE, sample_splitting_folds = NULL,
final_point_estimate = "split", stratified = FALSE,
C = rep(1, length(Y)), Z = NULL, ipc_scale = "identity",
ipc_weights = rep(1, length(Y)),
ipc_est_type = "aipw", scale_est = TRUE, nuisance_estimators_full = NULL,
nuisance_estimators_reduced = NULL, exposure_name = NULL,
bootstrap = FALSE, b = 1000, boot_interval_type = "perc",
clustered = FALSE, cluster_id = rep(NA, length(Y)), ...) {
# check to see if f1 and f2 are missing
# if the data is missing, stop and throw an error
check_inputs(Y, X, f1, f2, indx)
if (bootstrap & clustered & sum(is.na(cluster_id)) > 0){
stop(paste0("If using clustered bootstrap, cluster IDs must be provided",
" for all observations."))
}
# check to see if Y is a matrix or data.frame; if not, make it one
# (just for ease of reading)
if (is.null(dim(Y))) {
Y <- as.matrix(Y)
}
# set up internal data -- based on complete cases only
cc_lst <- create_z(Y, C, Z, X, ipc_weights)
Y_cc <- cc_lst$Y
X_cc <- X[C == 1, , drop = FALSE]
if (is.null(exposure_name)) {
A_cc <- rep(1, length(Y_cc))
} else {
A_cc <- X_cc[, exposure_name]
}
X_cc <- X_cc[, !(names(X_cc) %in% exposure_name), drop = FALSE]
weights_cc <- cc_lst$weights
Z_in <- cc_lst$Z
# get the correct measure function; if not one of the supported ones, say so
full_type <- get_full_type(type)
# set up folds for sample-splitting; if sample_splitting is FALSE, these
# aren't actually folds
if (is.null(sample_splitting_folds) | run_regression) {
if (sample_splitting) {
sample_splitting_folds <- make_folds(
Y, V = 2, C = C, stratified = stratified
)
} else {
sample_splitting_folds <- rep(1, length(Y))
}
}
sample_splitting_folds_cc <- sample_splitting_folds[C == 1]
# if run_regression = TRUE, then fit SuperLearner
if (run_regression) {
full_feature_vec <- 1:ncol(X_cc)
full_sl_lst <- run_sl(Y = Y_cc, X = X_cc, V = ifelse(sample_splitting, 2, 1),
SL.library = SL.library,
s = full_feature_vec, sample_splitting = sample_splitting,
cv_folds = sample_splitting_folds_cc,
ss_folds = sample_splitting_folds_cc, split = 1, verbose = FALSE,
weights = weights_cc, cross_fitted_se = FALSE,
vector = TRUE, ...)
red_split <- switch((sample_splitting) + 1, 1, 2)
red_Y <- Y_cc
if (full_type == "r_squared" || full_type == "anova") {
if (sample_splitting) {
full_sl_lst_2 <- run_sl(Y = Y_cc, X = X_cc, V = ifelse(sample_splitting, 2, 1),
SL.library = SL.library,
s = full_feature_vec, sample_splitting = sample_splitting,
cv_folds = sample_splitting_folds_cc,
ss_folds = sample_splitting_folds_cc, split = 2, verbose = FALSE,
weights = weights_cc, cross_fitted_se = FALSE,
vector = TRUE, ...)
red_Y <- matrix(full_sl_lst_2$preds)
} else {
red_Y <- matrix(full_sl_lst$preds, ncol = 1)
}
if (length(unique(red_Y)) == 1) {
red_Y <- Y_cc
}
}
redu_sl_lst <- run_sl(Y = red_Y, X = X_cc, V = ifelse(sample_splitting, 2, 1),
SL.library = SL.library,
s = full_feature_vec[-indx], sample_splitting = sample_splitting,
cv_folds = sample_splitting_folds_cc,
ss_folds = sample_splitting_folds_cc, split = red_split, verbose = FALSE,
weights = weights_cc, cross_fitted_se = FALSE,
vector = TRUE, ...)
full <- full_sl_lst$fit
reduced <- redu_sl_lst$fit
full_preds <- full_sl_lst$preds
redu_preds <- redu_sl_lst$preds
# if variable importance based on the average value under the optimal rule is requested,
# create a list with the necessary nuisance function estimators
if (grepl("average_value", full_type)) {
nuisance_estimators_full <- estimate_nuisances(fit = full, X = X_cc,
exposure_name = exposure_name,
V = ifelse(sample_splitting, 2, 1),
SL.library = SL.library,
sample_splitting = sample_splitting,
sample_splitting_folds = sample_splitting_folds_cc,
verbose = FALSE, weights = weights_cc,
cross_fitted_se = FALSE, split = 1, ...)
nuisance_estimators_reduced <- estimate_nuisances(fit = reduced, X = X_cc %>% dplyr::select(-!!exposure_name),
exposure_name = exposure_name,
V = ifelse(sample_splitting, 2, 1),
SL.library = SL.library,
sample_splitting = sample_splitting,
sample_splitting_folds = sample_splitting_folds_cc,
verbose = FALSE, weights = weights_cc,
cross_fitted_se = FALSE, split = red_split, ...)
} else {
nuisance_estimators_full <- NULL
nuisance_estimators_reduced <- NULL
}
} else { # otherwise they are fitted values
# check to make sure that the fitted values, folds are what we expect
check_fitted_values(Y = Y, f1 = f1, f2 = f2,
sample_splitting_folds = sample_splitting_folds,
cv = FALSE)
sample_splitting_folds_cc <- sample_splitting_folds[C == 1]
sample_splitting_folds_1 <- sample_splitting_folds_cc == 1
sample_splitting_folds_2 <- switch(
(sample_splitting) + 1,
sample_splitting_folds_cc == 1, sample_splitting_folds_cc == 2
)
# set up the fitted value objects
full_preds <- switch((length(f1) == nrow(Y)) + 1, f1, subset(f1, C == 1))
redu_preds <- switch((length(f2) == nrow(Y)) + 1, f2, subset(f2, C == 1))
full <- reduced <- NA
}
# calculate the estimators, EIFs
arg_lst <- list(...)
# set method and family to compatible with continuous values, for EIF estimation
arg_lst <- process_arg_lst(arg_lst)
if (full_type == "anova") {
# no sample-splitting, since no hypothesis testing
est_lst <- measure_anova(
full = full_preds, reduced = redu_preds,
y = Y_cc, full_y = Y_cc,
C = C, Z = Z_in,
ipc_weights = ipc_weights,
ipc_fit_type = "SL", na.rm = na.rm,
SL.library = SL.library, arg_lst
)
est <- est_lst$point_est
naive <- est_lst$naive
eif <- est_lst$eif
predictiveness_full <- NA
predictiveness_redu <- NA
eif_full <- rep(NA, length(Y))
eif_redu <- rep(NA, length(Y))
se_full <- NA
se_redu <- NA
if (bootstrap) {
boot_results <- bootstrap_se(Y = Y_cc, f1 = full_preds, f2 = redu_preds,
type = full_type, b = b,
boot_interval_type = boot_interval_type,
alpha = alpha, clustered = clustered,
cluster_id = cluster_id)
se <- boot_results$se
} else {
se <- sqrt(mean(eif ^ 2) / length(eif))
}
} else {
# if no sample splitting, estimate on the whole data
ss_folds_full <- switch((sample_splitting) + 1,
rep(1, length(sample_splitting_folds_cc)),
sample_splitting_folds_cc)
ss_folds_redu <- switch((sample_splitting) + 1,
rep(2, length(sample_splitting_folds_cc)),
sample_splitting_folds_cc)
predictiveness_full_object <- do.call(predictiveness_measure, c(
list(type = full_type, y = Y_cc[ss_folds_full == 1, , drop = FALSE],
a = A_cc[ss_folds_full == 1], fitted_values = full_preds[ss_folds_full == 1],
full_y = Y_cc, nuisance_estimators = lapply(nuisance_estimators_full, function(l) {
l[ss_folds_full == 1]
}), C = C[sample_splitting_folds == 1],
Z = Z_in[sample_splitting_folds == 1, , drop = FALSE],
ipc_weights = ipc_weights[sample_splitting_folds == 1],
ipc_fit_type = "SL", scale = ipc_scale,
ipc_est_type = ipc_est_type, na.rm = na.rm,
SL.library = SL.library), arg_lst
))
predictiveness_reduced_object <- do.call(predictiveness_measure, c(
list(type = full_type, y = Y_cc[ss_folds_redu == 2, , drop = FALSE],
a = A_cc[ss_folds_redu == 2], fitted_values = redu_preds[ss_folds_redu == 2],
full_y = Y_cc, nuisance_estimators = lapply(nuisance_estimators_reduced, function(l) {
l[ss_folds_redu == 2]
}), C = C[sample_splitting_folds == 2],
Z = Z_in[sample_splitting_folds == 2, , drop = FALSE],
ipc_weights = ipc_weights[sample_splitting_folds == 2],
ipc_fit_type = "SL", scale = ipc_scale,
ipc_est_type = ipc_est_type, na.rm = na.rm,
SL.library = SL.library), arg_lst
))
predictiveness_full_lst <- estimate(predictiveness_full_object)
predictiveness_redu_lst <- estimate(predictiveness_reduced_object)
# compute the point estimates of predictiveness and variable importance
predictiveness_full <- predictiveness_full_lst$point_est
predictiveness_redu <- predictiveness_redu_lst$point_est
est <- predictiveness_full - predictiveness_redu
naive <- NA
# compute estimates of standard error
eif_full <- predictiveness_full_lst$eif
eif_redu <- predictiveness_redu_lst$eif
se_full <- sqrt(mean(eif_full ^ 2) / length(eif_full))
se_redu <- sqrt(mean(eif_redu ^ 2) / length(eif_redu))
if (bootstrap & !sample_splitting) {
boot_results <- bootstrap_se(Y = Y_cc, f1 = full_preds, f2 = redu_preds,
type = full_type, b = b,
boot_interval_type = boot_interval_type,
alpha = alpha, clustered = clustered,
cluster_id = cluster_id)
se <- boot_results$se
se_full <- boot_results$se_full
se_redu <- boot_results$se_reduced
} else {
if (bootstrap) {
warning(paste0("Bootstrap-based standard error estimates are currently",
" only available if sample_splitting = FALSE. Returning",
" standard error estimates based on the efficient",
" influence function instead."))
}
se <- vimp_se(eif_full = eif_full, eif_reduced = eif_redu,
cross_fit = FALSE, sample_split = sample_splitting,
na.rm = na.rm)
}
}
est_for_inference <- est
predictiveness_full_for_inference <- predictiveness_full
predictiveness_reduced_for_inference <- predictiveness_redu
# if sample-splitting was requested and final_point_estimate isn't "split", estimate
# the required quantities
if (sample_splitting & (final_point_estimate != "split")) {
if (final_point_estimate == "full") {
est_pred_full <- do.call(predictiveness_measure, c(
list(type = full_type, y = Y_cc,
a = A_cc, fitted_values = full_preds,
full_y = Y_cc, nuisance_estimators = nuisance_estimators_full, C = C,
Z = Z_in,
ipc_weights = ipc_weights,
ipc_fit_type = "SL", scale = ipc_scale,
ipc_est_type = ipc_est_type, na.rm = na.rm,
SL.library = SL.library), arg_lst
))
est_pred_reduced <- do.call(predictiveness_measure, c(
list(type = full_type, y = Y_cc,
a = A_cc, fitted_values = redu_preds,
full_y = Y_cc, nuisance_estimators = nuisance_estimators_reduced, C = C,
Z = Z_in,
ipc_weights = ipc_weights,
ipc_fit_type = "SL", scale = scale,
ipc_est_type = ipc_est_type, na.rm = na.rm,
SL.library = SL.library), arg_lst
))
est_pred_full_lst <- estimate(est_pred_full)
est_pred_reduced_lst <- estimate(est_pred_reduced)
# compute the point estimates of predictiveness and variable importance
predictiveness_full <- est_pred_full_lst$point_est
predictiveness_redu <- est_pred_reduced_lst$point_est
est <- predictiveness_full - predictiveness_redu
} else {
est_pred_full <- do.call(predictiveness_measure, c(
list(type = full_type, y = Y_cc[ss_folds_full == 2, , drop = FALSE],
a = A_cc[ss_folds_full == 2], fitted_values = full_preds[ss_folds_full == 2],
full_y = Y_cc, nuisance_estimators = lapply(nuisance_estimators_full, function(l) {
l[ss_folds_full == 2]
}), C = C[sample_splitting_folds == 2],
Z = Z_in[sample_splitting_folds == 2, , drop = FALSE],
ipc_weights = ipc_weights[sample_splitting_folds == 2],
ipc_fit_type = "SL", scale = ipc_scale,
ipc_est_type = ipc_est_type, na.rm = na.rm,
SL.library = SL.library), arg_lst
))
est_pred_reduced <- do.call(predictiveness_measure, c(
list(type = full_type, y = Y_cc[ss_folds_redu == 1, , drop = FALSE],
a = A_cc[ss_folds_redu == 1], fitted_values = redu_preds[ss_folds_redu == 1],
full_y = Y_cc, nuisance_estimators = lapply(nuisance_estimators_reduced, function(l) {
l[ss_folds_redu == 1]
}), C = C[sample_splitting_folds == 1],
Z = Z_in[sample_splitting_folds == 1, , drop = FALSE],
ipc_weights = ipc_weights[sample_splitting_folds == 1],
ipc_fit_type = "SL", scale = ipc_scale,
ipc_est_type = ipc_est_type, na.rm = na.rm,
SL.library = SL.library), arg_lst
))
est_pred_full_lst <- estimate(est_pred_full)
est_pred_reduced_lst <- estimate(est_pred_reduced)
# compute the point estimates of predictiveness and variable importance
predictiveness_full <- mean(c(predictiveness_full, est_pred_full_lst$point_est))
predictiveness_redu <- mean(c(predictiveness_redu, est_pred_reduced_lst$point_est))
est <- predictiveness_full - predictiveness_redu
}
}
# if est < 0, set to zero and print warning
if (est < 0 && !is.na(est) & scale_est) {
est <- 0
warning("Original estimate < 0; returning zero.")
} else if (is.na(est)) {
warning("Original estimate NA; consider using a different library of learners.")
}
# compute the confidence intervals
ci <- vimp_ci(est_for_inference, se, scale = scale, level = 1 - alpha)
if (bootstrap) {
ci <- boot_results$ci
}
predictiveness_ci_full <- vimp_ci(
predictiveness_full_for_inference, se = se_full, scale = scale, level = 1 - alpha
)
predictiveness_ci_redu <- vimp_ci(
predictiveness_reduced_for_inference, se = se_redu, scale = scale, level = 1 - alpha
)
# perform a hypothesis test against the null of zero importance
if (full_type == "anova" || full_type == "regression" || !sample_splitting) {
hyp_test <- list(test = NA, p_value = NA, test_statistics = NA)
} else {
hyp_test <- vimp_hypothesis_test(
predictiveness_full = predictiveness_full_for_inference,
predictiveness_reduced = predictiveness_reduced_for_inference,
se = se, delta = delta, alpha = alpha
)
}
# create the output and return it (as a tibble)
chr_indx <- paste(as.character(indx), collapse = ",")
mat <- tibble::tibble(
s = chr_indx, est = est, se = se, cil = ci[1], ciu = ci[2],
test = hyp_test$test, p_value = hyp_test$p_value
)
if (full_type == "anova") {
final_eif <- eif
} else {
if (length(eif_full) != length(eif_redu)) {
max_len <- max(c(length(eif_full), length(eif_redu)))
eif_full <- c(eif_full, rep(NA, max_len - length(eif_full)))
eif_redu <- c(eif_redu, rep(NA, max_len - length(eif_redu)))
}
final_eif <- eif_full - eif_redu
}
output <- list(s = chr_indx,
SL.library = SL.library,
full_fit = full_preds, red_fit = redu_preds,
est = est,
naive = naive,
eif = final_eif,
eif_full = eif_full,
eif_reduced = eif_redu,
se = se, ci = ci,
est_for_inference = est_for_inference,
predictiveness_full = predictiveness_full,
predictiveness_reduced = predictiveness_redu,
predictiveness_full_for_inference = predictiveness_full_for_inference,
predictiveness_reduced_for_inference = predictiveness_reduced_for_inference,
predictiveness_ci_full = predictiveness_ci_full,
predictiveness_ci_reduced = predictiveness_ci_redu,
test = hyp_test$test,
p_value = hyp_test$p_value,
test_statistic = hyp_test$test_statistic,
full_mod = full,
red_mod = reduced,
alpha = alpha,
delta = delta,
y = Y,
sample_splitting_folds = sample_splitting_folds,
ipc_weights = ipc_weights,
ipc_scale = ipc_scale,
scale = scale,
cluster_id = cluster_id,
mat = mat)
# make it also a vim and vim_type object
tmp.cls <- class(output)
class(output) <- c("vim", full_type, tmp.cls)
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.