gsaWilcoxSurv: Gene Set Analysis GSA, experimental implementation

Description Usage Arguments Details Value Author(s) See Also Examples

Description

Test whether a set of genes is highly ranked relative to other genes in terms of a given statistic, for example a ranking based on univariate Cox coefficients. Genes are assumed to be independent.

Usage

1
2
3
4
5
6
7
## S4 method for signature 'gsagenesets,missing,missing,character,numeric'
gsaWilcoxSurv(
gmt, genenames, statistics,  p.value=0.1, cluster=FALSE,
cluster.threshold=0.3,...)
## S4 method for signature 'gsagenesets,ExpressionSet,Surv,missing,missing'
gsaWilcoxSurv(gmt,
X, y, genenames, statistics, ...)

Arguments

gmt

An object of class gsagenesets or a list of gene sets.

X

An object of class ExpressionSet or matrix.

y

An object of class Surv.

genenames

Alternatively to X and y, a character vector of gene names rcorresponding to genes in gmt.

statistics

numeric vector for genes specified in genenames, any genewise statistic by which genes can be ranked.

p.value

Only report gene sets with p-value lower than this cutoff.

cluster

If true, then significant gene sets are clustered and ranked together.

cluster.threshold

Minimum overlap of gene set clustering.

...

Additional arguments passed from alternative S4 signatures or to the wilcoxGST function.

Details

A convenient wrapper around the wilcoxGST function from the limma package. See the limma package documentation for details.

This method makes it a little bit easier to test gene sets from a GMT file with the wilcoxGST function. It further adds a clustering of gene sets that passed the p.value threshold. The cluster parameter cluster.threshold specifies the minimum overlap of genes (default is 0.3 or 30 percent) in the clustering.

Value

An object of class gsaresults.

Author(s)

Markus Riester markus@jimmy.harvard.edu, Levi Waldron lwaldron@hsph.harvard.edu, Christoph Bernau bernau@ibe.med.uni-muenchen.de

See Also

gsaReadGmt, gsaTranslateGmt

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    library(survHD)
     library(survHDExtra)
    set.seed(100)
    # create some random data
    x<-matrix(rnorm(1000*20),ncol=20)
    dd<-sample(1:1000,size=100)
    u<-matrix(2*rnorm(100),ncol=10,nrow=100)
    x[dd,11:20]<-x[dd,11:20]+u
    y<-Surv(c(rnorm(10)+1,rnorm(10)+2), rep(TRUE, 20))
    genenames=paste("g",1:1000,sep="")
    rownames(x) = genenames

    # create some random gene sets
    genesets=vector("list",50)
    for(i in 1:50){
        genesets[[i]]=paste("g",sample(1:1000,size=30),sep="")
    }
    geneset.names=paste("set",as.character(1:50),sep="")
    gmt <- new("gsagenesets", genesets=genesets, geneset.names=geneset.names)
    gsa.res <- gsaWilcoxSurv(gmt, X=x,y=y,cluster=FALSE,p.value=0.3 )

    # show the similarity of significant gene sets
    plot(gsa.res)

    # display a barcode of up to two gene sets.
    plot(gsa.res, type="barcode",geneset.id1="set22", geneset.id2="set33")
    
    library(genefilter)
    # use a pre-ranking of genes
    genes.ttest = rowttests(x, as.factor(c(rep(1,10),rep(2,10))))
    gsa.res.tt  <- gsaWilcoxSurv(gmt, genenames=rownames(x),
        statistics=genes.ttest[,1])

    # now test some gene signatures on our Affymetrix example data (Beer et. al
    # 2002)
    data(beer.exprs)
    data(beer.survival)
    library(hu6800.db)
    library(annotate)

    gmt <- gsaReadGmt(system.file("extdata/ovarian_gene_signatures.gmt", package = "survHD"))
    # the Gmt file contains gene symbols, so we translate it to Affymetrix 
    genes <- getSYMBOL(rownames(beer.exprs), "hu6800")
    gmt.affy <- gsaTranslateGmt(gmt, beer.exprs, genes)
    gsa.res <- gsaWilcoxSurv(gmt.affy, beer.exprs, Surv(beer.survival[,2], beer.survival[,1]))

bernau/survHDExtra documentation built on May 12, 2019, 4:22 p.m.