makeSampledat <- function(features, samples){
ll <- list()
ll$X <- matrix(rnorm(features * samples), nrow=samples)
colnames(ll$X) <- make.names(1:ncol(ll$X))
ll$y <- Surv(runif(samples), rbinom(samples, 1, 0.5))
ll$fold <- 10
ll$strat <- FALSE
ll$measure <- "CvPLogL"
ll$grids$lambda <- c(1, 10, 100)
ll$survmethod <- "customSurv"
ll$customSurvModel<-customPenalized
ll$penalty <- "ridge"
ll$standardize <- FALSE
return(ll)
}
test_penalizedSurv_tunewitherr <- function(){
require(penalized)
require(survHD)
require(survHDExtra)
set.seed(1)
ll <- makeSampledat(100, 50)
#tuneres.witherr <- do.call(tune, args=ll)
#lambda.witherr <- getBestParameters(tuneres.witherr, res.ind=1, measure='CvPLogL')@par$lambda
#ll$grids$lambda <- ll$grids$lambda[-1]
#tuneres.fine <- do.call(tune, args=ll)
#lambda.fine <- getBestParameters(tuneres.fine, res.ind=1, measure='CvPLogL')@par$lambda
#checkEquals(lambda.witherr, lambda.fine)
###model does not converge-> problem happens in predictsurvhd(sig(penalizedSurv,))
###probably because predictions are not performed because the model did not converge
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.