require(devtools)
load_all()
file <- download_data('atkin.somascan.adat')
object <- read_somascan(file)
object %<>% fit_limma(block = 'Subject', codingfun = code_diff)
plot_exprs(object, coef = 't1-t0', block = 'Subject', n = 2)
require(ggplot2)
p <- ggplot() + theme_void()
p <- p + ggforce::geom_circle(aes(x0 = 1, y0 = 1, r = 2.5))
p <- p + annotate('rect', xmin = 0, ymin = 1.0, xmax = 1.0, ymax = 2.0, fill = 'white', colour = 'black')
p <- p + annotate('rect', xmin = 1, ymin = 1, xmax = 2, ymax = 2, fill = 'white', colour = 'black')
p <- p + annotate('rect', xmin = 0, ymin = 0, xmax = 1, ymax = 1, fill = 'white', colour = 'black')
p <- p + annotate('text', label = 'assays()', x = 0.5, y = 1.5, family = 'mono')
p <- p + annotate('text', label = 'fdt()', x = 1.5, y = 1.5, family = 'mono')
p <- p + annotate('text', label = 'sdt()', x = 0.5, y = 0.5, family = 'mono')
p <- p + annotate('text', x = c(0.2, 0.4, 1.2, 1.4), y = 2.2, label = c('C0.t0', 'C0.t1', 'pathway', 'mass'), angle = 90, hjust = 0)
p <- p + annotate('text', x = -0.05, y = c(1.9, 1.6), label = c('methionine', 'palmitate'), hjust = 1)
p <- p + annotate('text', x = -0.05, y = c(0.9, 0.6, 0.3), label = c('subject', 'time', 't2d'), hjust = 1)
p <- p + annotate('segment', x = 0.1, y = 2.1, xend = 1.1, yend = 2.1) +
annotate('segment', x = 0, y = 2, xend = 0.1, yend = 2.1) +
annotate('segment', x = 1, y = 2, xend = 1.1, yend = 2.1) +
annotate('segment', x = 1.1, y = 2.1, xend = 1.1, yend = 2.0)
p <- p + annotate('text', x = 1, y = -0.3, label = 'object', hjust = 0.5, size = 4.5, family = 'mono')
#p <- p + annotate('text', x = 1, y = -0.8, label = 'SummarizedExperiment', hjust = 0.5, size = 4.5)
dt <- data.table(
label = c(
'METABOLITE\nread_metabolon()',
'PROTEIN : AFFINITY\nread_somascan()\nread_olink()',
'PROTEIN : DIA\nread_diann()\nread_fragpipe()',
'PROTEIN : DDA\nread_proteingroups()\nread_phosphosites()',
'RNA : ARRAY\nread_affymetrix()',
'RNA : NGS\nread_counts()\nread_bams()'
),
platform = c('MET', 'AFFPRO', 'DIAPRO', 'DDAPRO', 'ARRRNA', 'NGSRNA'),
degrees = (0:5)*180/5
)
dt[, platform := factor(platform, unique(platform))]
dt[, radians := 2*pi/360*degrees]
dt[, xend := 1 + 2.5*cos(radians)]
dt[, yend := 1 + 2.5*sin(radians)]
dt[, x := 1 + 4.5*cos(radians)]
dt[, y := 1 + 4.5*sin(radians)]
p <- p + geom_segment(data = dt, aes(x = x, xend = xend, y = y, yend = yend), arrow = arrow())
p <- p + geom_label(data = dt, aes(x = x, y = y, label = label, fill = platform))
p <- p + guides(fill = 'none') + xlim(1+c(-6, +6)) + ylim(1+c(-6, +6))
p <- p + scale_fill_manual(values = c(NGSRNA = "#F8766D", ARRRNA = "#F564E3", DDAPRO = "#619CFF", DIAPRO = "#00BFC4", AFFPRO = "#00BA38", MET = "yellow" ))
p + annotate('text', x = -3, y = -2.0, hjust = 0, family = 'mono', label = "object %<>% fit_lm( ~time) # classic") +
annotate('text', x = -3, y = -2.3, hjust = 0, family = 'mono', label = " fit_lme( ~time, block = 'subject') # random effects") +
annotate('text', x = -3, y = -2.6, hjust = 0, family = 'mono', label = " fit_lmer( ~time, block = 'subject') # advanced random effects") +
annotate('text', x = -3, y = -2.9, hjust = 0, family = 'mono', label = " fit_wilcoxon( ~time, block = 'subject') # unparametric") +
annotate('text', x = -3, y = -3.5, hjust = 0, family = 'mono', label = " fit_limma( ~time, block = 'subject' # large-scale") +
annotate('text', x = -3, y = -3.8, hjust = 0, family = 'mono', label = " fit_limma( ~time, block = 'subject', codingfun = contr.treatment.explicit # alternative codings") +
annotate('text', x = -3, y = -4.1, hjust = 0, family = 'mono', label = " fit_limma( ~0+time, block = 'subject', contrasts = 't1-t0') # simplified contrasts")
fdt(object) %<>% extract(, 1:2)
object %<>% fit_lm( codingfun = contr.treatment.explicit, coefs = 't3-t0')
object %<>% fit_lme( codingfun = contr.treatment.explicit, coefs = 't3-t0', block = 'Subject')
object %<>% fit_lmer( codingfun = contr.treatment.explicit, coefs = 't3-t0', block = 'Subject')
object %<>% fit_limma( codingfun = contr.treatment.explicit, coefs = 't3-t0', block = 'Subject')
object %<>% fit_wilcoxon(block = 'Subject')
fdt(object) %<>% extract(, c(1:14, 17, 23, 20))
plot_contrast_venn(is_sig(object, fit = c('limma', 'lme', 'wilcoxon'), contrast = 't3-t0'))
plot(-log10(fdt(object)$`p~t3-t0~limma`), -log10(fdt(object)$`p~t3-t0~wilcoxon`))
plot(-log10(fdt(object)$`p~t3-t0~limma`), -log10(fdt(object)$`p~t3-t0~lme`))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.