drugSensitivitySig: get drug sensitivity values

View source: R/drug_Sensitivity_Signature.R

drugSensitivitySigR Documentation

get drug sensitivity values

Description

Given a Xeva object and drug name, this function will return sensitivity values for all the genes/features.

Usage

drugSensitivitySig(
  object,
  drug,
  sensitivity.measure,
  mDataType,
  standardize = c("SD", "rescale", "none"),
  features = NULL,
  fit = c("lm", "CI", "pearson", "spearman"),
  nthread = 1,
  verbose = TRUE
)

Arguments

object

The Xeva dataset.

drug

Name of the drug.

sensitivity.measure

Name of the sensitivity measure.

mDataType

Molecular data type.

standardize

Default SD. Name of the method to use for data standardization before fitting.

features

Set which molecular data features to use. Default NULL will use all features.

fit

Association method to use, can be 'lm', 'CI', 'pearson' or 'spearman'. Default lm.

nthread

number of threads

verbose

Default TRUE will show information

Details

Method to compute association can be specified by fit. It can be one of the:

  • "lm" for linear models

  • "CI" for concordance index

  • "pearson" for Pearson correlation

  • "spearman" for Spearman correlation

If fit is set to NA, processed data (an ExpressionSet) will be returned.

A matrix of values can be directly passed to molData. In case where a model.id maps to multiple biobase.ids, the first biobase.id in the data.frame will be used.

Value

A data.frame with features and values.

Examples

data(brca)
senSig <- drugSensitivitySig(object=brca, drug="tamoxifen",
                             mDataType="RNASeq",
                             sensitivity.measure="slope", fit = "lm")

## example to compute the Pearson correlation between gene expression and PDX response
senSig <- drugSensitivitySig(object=brca, drug="tamoxifen",
                             mDataType="RNASeq",
                             sensitivity.measure="slope", fit = "pearson",
                             features=c(1,2,3,4,5,6))


bhklab/Xeva documentation built on Nov. 12, 2022, 5:38 a.m.