The genefu package is providing relevant functions for gene expression analysis, especially in breast cancer. This package includes a number of algorithms for molecular subtype classification. The package also includes implementations of prognostic prediction algorithms, along with lists of prognostic gene signatures on which these algorithms were based.
Please refer to the manuscript URL and Lab website: http://www.pmgenomics.ca/bhklab/software/genefu
Please also refer to the References section below, for additional information on publications that have cited Version 1 of genefu.
First we load the genefu into the workspace. The package is publicly available and can be installed from Bioconductor version 2.8 or higher in R version 2.13.0 or higher.
To install the genefu package:
BiocManager::install("genefu")
For computing the risk scores, estimates of the performance of the risk scores, combining the estimates and comparing the estimates we have to load the genefu
and survcomp
packages into the workspace.
We also load all the packages we need to conduct the case studies.
library(genefu) library(xtable) library(rmeta) library(Biobase) library(caret)
The following case study compares risk prediction models. This includes computing risk scores, computing estimates of the performance of the risk scores, as well as combining the estimates and comparing them.
The five data sets that we use in the case study are publicly available as experimental data packages on Bioconductor.org. In particular we used:
r Biocpkg('breastCancerMAINZ')
r Biocpkg('breastCancerUPP')
r Biocpkg('breastCancerUNT')
r Biocpkg('breastCancerNKI')
r Biocpkg('breastCancerTRANSBIG')
Please Note: We don't use the breastCancerVDX experimental package in this case study since it has been used as training data set for GENIUS. Please refer to Haibe-Kains et al, 2010. The breastCancerVDX is found at the following link:
r Biocpkg('breastCancerVDX')
These experimental data packages can be installed from Bioconductor version 2.8 or higher in R version 2.13.0 or higher. For the experimental data packages the commands for installing the data sets are:
BiocManager::install("breastCancerMAINZ") BiocManager::install("breastCancerTRANSBIG") BiocManager::install("breastCancerUPP") BiocManager::install("breastCancerUNT") BiocManager::install("breastCancerNKI")
library(breastCancerMAINZ) library(breastCancerTRANSBIG) library(breastCancerUPP) library(breastCancerUNT) library(breastCancerNKI)
| Dataset | Patients [#] | ER+ [#] | HER2+ [#] | Age [years] | Grade [1/2/3] | Platform | |----------|---------------|----------|------------|-------------|---------------|--------------| | MAINZ | 200 | 155 | 23 | 25-90 | 29/136/35 | HGU133A | | TRANSBIG | 198 | 123 | 35 | 24-60 | 30/83/83 | HGU133A | | UPP | 251 | 175 | 46 | 28-93 | 67/128/54 | HGU133AB | | UNT | 137 | 94 | 21 | 24-73 | 32/51/29 | HGU133AB | | NKI | 337 | 212 | 53 | 26-62 | 79/109/149 | Agilent | | Overall | 1123 | 759 | 178 | 25-73 | 237/507/350 | Affy/Agilent |
: (#tab:table1) Detailed overview for the data sets used in the case study.
Table \@ref(tab:table1) shows an overview of the data sets and the patients (n=1123). Information on ER and HER2 status, as well as patient ages (range of patient ages per dataset) has been extracted from the phenotype (pData) of the corresponding dataset under the Gene Expression Omnibus (GEO). The corresponding GEO accession numbers of the Mainz, Transbig, UPP, and UNT datasets are GSE11121,GSE7390,GSE3494, and GSE2990 respectively. Data was also obtained from the publication supplementary information for the NKI dataset.
For analysis involving molecular subtyping classifications [Section 4], we perform molecular subtyping on each of the datasets seperately, after the removal of duplicate patients in the datasets.
For analysis comparing risk prediction models and determining prognosis [Section 5], we selected from those 1123 breast cancer patients only the patients that are node negative and didn't receive any treatment (except local radiotherapy), which results in 713 patients [please consult Section 5 for more details] .
data(breastCancerData) cinfo <- colnames(pData(mainz7g)) data.all <- c("transbig7g"=transbig7g, "unt7g"=unt7g, "upp7g"=upp7g, "mainz7g"=mainz7g, "nki7g"=nki7g) idtoremove.all <- NULL duplres <- NULL ## No overlaps in the MainZ and NKI datasets. ## Focus on UNT vs UPP vs TRANSBIG demo.all <- rbind(pData(transbig7g), pData(unt7g), pData(upp7g)) dn2 <- c("TRANSBIG", "UNT", "UPP") ## Karolinska ## Search for the VDXKIU, KIU, UPPU series ds2 <- c("VDXKIU", "KIU", "UPPU") demot <- demo.all[complete.cases(demo.all[ , c("series")]) & is.element(demo.all[ , "series"], ds2), ] # Find the duplicated patients in that series duplid <- sort(unique(demot[duplicated(demot[ , "id"]), "id"])) duplrest <- NULL for(i in 1:length(duplid)) { tt <- NULL for(k in 1:length(dn2)) { myx <- sort(row.names(demot)[complete.cases(demot[ , c("id", "dataset")]) & demot[ , "id"] == duplid[i] & demot[ , "dataset"] == dn2[k]]) if(length(myx) > 0) { tt <- c(tt, myx) } } duplrest <- c(duplrest, list(tt)) } names(duplrest) <- duplid duplres <- c(duplres, duplrest) ## Oxford ## Search for the VVDXOXFU, OXFU series ds2 <- c("VDXOXFU", "OXFU") demot <- demo.all[complete.cases(demo.all[ , c("series")]) & is.element(demo.all[ , "series"], ds2), ] # Find the duplicated patients in that series duplid <- sort(unique(demot[duplicated(demot[ , "id"]), "id"])) duplrest <- NULL for(i in 1:length(duplid)) { tt <- NULL for(k in 1:length(dn2)) { myx <- sort(row.names(demot)[complete.cases(demot[ , c("id", "dataset")]) & demot[ , "id"] == duplid[i] & demot[ , "dataset"] == dn2[k]]) if(length(myx) > 0) { tt <- c(tt, myx) } } duplrest <- c(duplrest, list(tt)) } names(duplrest) <- duplid duplres <- c(duplres, duplrest) ## Full set duplicated patients duPL <- sort(unlist(lapply(duplres, function(x) { return(x[-1]) } )))
We now perform molecular subtyping on each of the datasets. Here, we perform subtyping using the PAM50 as well as the SCMOD2 subtyping algorithms.
# Load the requisite data data(scmod2.robust) data(pam50.robust) data(scmgene.robust) data(sig.ggi) data(scmod1.robust) data(sig.genius) dn <- c("transbig", "unt", "upp", "mainz", "nki") dn.platform <- c("affy", "affy", "affy", "affy", "agilent") res <- ddemo.all <- ddemo.coln <- NULL for(i in 1:length(dn)) { ## load dataset dd <- get(data(list=dn[i])) #Remove duplicates identified first message("obtained dataset!") #Extract expression set, pData, fData for each dataset ddata <- t(exprs(dd)) ddemo <- phenoData(dd)@data if(length(intersect(rownames(ddata),duPL))>0) { ddata<-ddata[-which(rownames(ddata) %in% duPL),] ddemo<-ddemo[-which(rownames(ddemo) %in% duPL),] } dannot <- featureData(dd)@data # MOLECULAR SUBTYPING # Perform subtyping using scmod2.robust # scmod2.robust: List of parameters defining the subtype clustering model # (as defined by Wirapati et al) # OBSOLETE FUNCTION CALL - OLDER VERSIONS OF GENEFU # SubtypePredictions<-subtype.cluster.predict(sbt.model=scmod2.robust,data=ddata, # annot=dannot,do.mapping=TRUE, # verbose=TRUE) # CURRENT FUNCTION CALL - NEWEST VERSION OF GENEFU SubtypePredictions <- molecular.subtyping(sbt.model = "scmod2",data = ddata, annot = dannot,do.mapping = TRUE) #Get sample counts pertaining to each subtype table(SubtypePredictions$subtype) #Select samples pertaining to Basal Subtype Basals<-names(which(SubtypePredictions$subtype == "ER-/HER2-")) #Select samples pertaining to HER2 Subtype HER2s<-names(which(SubtypePredictions$subtype == "HER2+")) #Select samples pertaining to Luminal Subtypes LuminalB<-names(which(SubtypePredictions$subtype == "ER+/HER2- High Prolif")) LuminalA<-names(which(SubtypePredictions$subtype == "ER+/HER2- Low Prolif")) #ASSIGN SUBTYPES TO EVERY SAMPLE, ADD TO THE EXISTING PHENODATA ddemo$SCMOD2<-SubtypePredictions$subtype ddemo[LuminalB,]$SCMOD2<-"LumB" ddemo[LuminalA,]$SCMOD2<-"LumA" ddemo[Basals,]$SCMOD2<-"Basal" ddemo[HER2s,]$SCMOD2<-"Her2" # Perform subtyping using PAM50 # Matrix should have samples as ROWS, genes as COLUMNS # rownames(dannot)<-dannot$probe<-dannot$EntrezGene.ID # OLDER FUNCTION CALL # PAM50Preds<-intrinsic.cluster.predict(sbt.model=pam50,data=ddata, # annot=dannot,do.mapping=TRUE, # verbose=TRUE) # NEWER FUNCTION CALL BASED ON MOST RECENT VERSION PAM50Preds<-molecular.subtyping(sbt.model = "pam50",data=ddata, annot=dannot,do.mapping=TRUE) table(PAM50Preds$subtype) ddemo$PAM50<-PAM50Preds$subtype LumA<-names(PAM50Preds$subtype)[which(PAM50Preds$subtype == "LumA")] LumB<-names(PAM50Preds$subtype)[which(PAM50Preds$subtype == "LumB")] ddemo[LumA,]$PAM50<-"LumA" ddemo[LumB,]$PAM50<-"LumB" ddemo.all <- rbind(ddemo, ddemo.all) }
We can compare the performance of both molecular subtyping methods and determine how concordant subtype predictions are across the global population. We first generate a confusion matrix of the subtype predictions.
# Obtain the subtype prediction counts for PAM50 table(ddemo.all$PAM50) Normals<-rownames(ddemo.all[which(ddemo.all$PAM50 == "Normal"),]) # Obtain the subtype prediction counts for SCMOD2 table(ddemo.all$SCMOD2) ddemo.all$PAM50<-as.character(ddemo.all$PAM50) # We compare the samples that are predicted as pertaining to a molecular subtyp # We ignore for now the samples that predict as 'Normal' by PAM50 confusionMatrix( factor(ddemo.all[-which(rownames(ddemo.all) %in% Normals),]$SCMOD2), factor(ddemo.all[-which(rownames(ddemo.all) %in% Normals),]$PAM50) )
From these results, the concordance of the predictions between these models is around 85 percent.
We can also compare the survival of patients for each subtype. We plot the surival curves of patients by subtype, based on each molecular classification algorithm
# http://www.inside-r.org/r-doc/survival/survfit.coxph library(survival) ddemo<-ddemo.all data.for.survival.SCMOD2 <- ddemo[,c("e.os", "t.os", "SCMOD2","age")] data.for.survival.PAM50 <- ddemo[,c("e.os", "t.os", "PAM50","age")] # Remove patients with missing survival information data.for.survival.SCMOD2 <- data.for.survival.SCMOD2[complete.cases(data.for.survival.SCMOD2),] data.for.survival.PAM50 <- data.for.survival.PAM50[complete.cases(data.for.survival.PAM50),] days.per.month <- 30.4368 days.per.year <- 365.242 data.for.survival.PAM50$months_to_death <- data.for.survival.PAM50$t.os / days.per.month data.for.survival.PAM50$vital_status <- data.for.survival.PAM50$e.os == "1" surv.obj.PAM50 <- survfit(Surv(data.for.survival.PAM50$months_to_death, data.for.survival.PAM50$vital_status) ~ data.for.survival.PAM50$PAM50) data.for.survival.SCMOD2$months_to_death <- data.for.survival.SCMOD2$t.os / days.per.month data.for.survival.SCMOD2$vital_status <- data.for.survival.SCMOD2$e.os == "1" surv.obj.SCMOD2 <- survfit(Surv( data.for.survival.SCMOD2$months_to_death, data.for.survival.SCMOD2$vital_status) ~ data.for.survival.SCMOD2$SCMOD2) message("KAPLAN-MEIR CURVE - USING PAM50") plot(main = "Surival Curves PAM50", surv.obj.PAM50, col =c("#006d2c", "#8856a7","#a50f15", "#08519c", "#000000"),lty = 1,lwd = 3, xlab = "Time (months)",ylab = "Probability of Survival") legend("topright", fill = c("#006d2c", "#8856a7","#a50f15", "#08519c", "#000000"), legend = c("Basal","Her2","LumA","LumB","Normal"),bty = "n") message("KAPLAN-MEIR CURVE - USING SCMOD2") plot(main = "Surival Curves SCMOD2", surv.obj.SCMOD2, col =c("#006d2c", "#8856a7","#a50f15", "#08519c"),lty = 1,lwd = 3, xlab = "Time (months)",ylab = "Probability of Survival") legend("topright", fill = c("#006d2c", "#8856a7","#a50f15", "#08519c"), legend = c("Basal","Her2","LumA","LumB"),bty = "n") ## GENERATE A OVERLAYED PLOT OF SURVIVAL CURVES message("Overlayed Surival Plots based on PAM50 and SCMOD2") ## Basal Her2 LuminalA LuminalB Normal plot(surv.obj.PAM50,col =c("#006d2c", "#8856a7","#a50f15", "#08519c", "#000000"),lty = 1,lwd = 3, xlab = "Time (months)",ylab = "Probability of Survival",ymin = 0.2) legend("topright", fill = c("#006d2c", "#8856a7","#a50f15", "#08519c", "#000000"), legend = c("Basal","Her2","LumA","LumB","Normal"),bty = "n") par(new=TRUE) ## Basal Her2 LuminalA LuminalB lines(surv.obj.SCMOD2,col =c("#006d2c", "#8856a7","#a50f15", "#08519c"),lwd=2,lty=5) legend("bottomright",c("PAM50","SCMOD2"),lty=c("solid", "dashed"))
We can now compare which of the molecular subtyping algorithms is more prognostic. To do this we use a Cross-validated Partial Likelihood (cvpl) calculation from survcomp. This returns the mean cross-validated partial likelihood, for each algorithm, using molecular subtypes for stratification
set.seed(12345) PAM5_CVPL<-cvpl(x=data.for.survival.PAM50$age, surv.time=data.for.survival.PAM50$months_to_death, surv.event=data.for.survival.PAM50$vital_status, strata=as.integer(factor(data.for.survival.PAM50$PAM50)), nfold=10, setseed=54321)$cvpl SCMOD2_CVPL<-cvpl(x=data.for.survival.SCMOD2$age, surv.time=data.for.survival.SCMOD2$months_to_death, surv.event=data.for.survival.SCMOD2$vital_status, strata=as.integer(factor(data.for.survival.SCMOD2$SCMOD2)), nfold=10, setseed=54321)$cvpl print.data.frame(data.frame(cbind(PAM5_CVPL,SCMOD2_CVPL)))
We compute the risk scores using the following list of algorithms (and corresponding genefu functions):
# Load gene signature data(sig.endoPredict) data(sig.oncotypedx) data(sig.tamr13) data(sig.gene70) data(sig.pik3cags) data(pam50) dn <- c("transbig", "unt", "upp", "mainz", "nki") dn.platform <- c("affy", "affy", "affy", "affy", "agilent") res <- ddemo.all <- ddemo.coln <- NULL for(i in 1:length(dn)) { ## load dataset dd <- get(data(list=dn[i])) #Extract expression set, pData, fData for each dataset ddata <- t(exprs(dd)) ddemo <- phenoData(dd)@data dannot <- featureData(dd)@data ddemo.all <- c(ddemo.all, list(ddemo)) if(is.null(ddemo.coln)) { ddemo.coln <- colnames(ddemo) } else { ddemo.coln <- intersect(ddemo.coln, colnames(ddemo)) } rest <- NULL ## AURKA ## if affy platform consider the probe published in Desmedt et al., CCR, 2008 if(dn.platform[i] == "affy") { domap <- FALSE } else { domap <- TRUE } modt <- scmgene.robust$mod$AURKA ## if agilent platform consider the probe published in Desmedt et al., CCR, 2008 if(dn.platform[i] == "agilent") { domap <- FALSE modt[ , "probe"] <- "NM_003600" } rest <- cbind(rest, "AURKA"=sig.score(x=modt, data=ddata, annot=dannot, do.mapping=domap)$score) ## ESR1 ## if affy platform consider the probe published in Desmedt et al., CCR, 2008 if(dn.platform[i] == "affy") { domap <- FALSE } else { domap <- TRUE } modt <- scmgene.robust$mod$ESR1 ## if agilent platform consider the probe published in Desmedt et al., CCR, 2008 if(dn.platform[i] == "agilent") { domap <- FALSE modt[ , "probe"] <- "NM_000125" } rest <- cbind(rest, "ESR1"=sig.score(x=modt, data=ddata, annot=dannot, do.mapping=domap)$score) ## ERBB2 ## if affy platform consider the probe published in Desmedt et al., CCR, 2008 if(dn.platform[i] == "affy") { domap <- FALSE } else { domap <- TRUE } modt <- scmgene.robust$mod$ERBB2 ## if agilent platform consider the probe published in Desmedt et al., CCR, 2008 if(dn.platform[i] == "agilent") { domap <- FALSE modt[ , "probe"] <- "NM_004448" } rest <- cbind(rest, "ERBB2"=sig.score(x=modt, data=ddata, annot=dannot, do.mapping=domap)$score) ## NPI ss <- ddemo[ , "size"] gg <- ddemo[ , "grade"] nn <- rep(NA, nrow(ddemo)) nn[complete.cases(ddemo[ , "node"]) & ddemo[ , "node"] == 0] <- 1 nn[complete.cases(ddemo[ , "node"]) & ddemo[ , "node"] == 1] <- 3 names(ss) <- names(gg) <- names(nn) <- rownames(ddemo) rest <- cbind(rest, "NPI"=npi(size=ss, grade=gg, node=nn, na.rm=TRUE)$score) ## GGI if(dn.platform[i] == "affy") { domap <- FALSE } else { domap <- TRUE } rest <- cbind(rest, "GGI"=ggi(data=ddata, annot=dannot, do.mapping=domap)$score) ## GENIUS if(dn.platform[i] == "affy") { domap <- FALSE } else { domap <- TRUE } rest <- cbind(rest, "GENIUS"=genius(data=ddata, annot=dannot, do.mapping=domap)$score) ## ENDOPREDICT if(dn.platform[i] == "affy") { domap <- FALSE } else { domap <- TRUE } rest <- cbind(rest, "EndoPredict"=endoPredict(data=ddata, annot=dannot, do.mapping=domap)$score) # OncotypeDx if(dn.platform[i] == "affy") { domap <- FALSE } else { domap <- TRUE } rest <- cbind(rest, "OncotypeDx"=oncotypedx(data=ddata, annot=dannot, do.mapping=domap)$score) ## TamR # Note: risk is not implemented, the function will return NA values if(dn.platform[i] == "affy") { domap <- FALSE } else { domap <- TRUE } rest <- cbind(rest, "TAMR13"=tamr13(data=ddata, annot=dannot, do.mapping=domap)$score) ## GENE70 # Need to do mapping for Affy platforms because this is based on Agilent. # Hence the mapping rule is reversed here! if(dn.platform[i] == "affy") { domap <- TRUE } else { domap <- FALSE } rest <- cbind(rest, "GENE70"=gene70(data=ddata, annot=dannot, std="none", do.mapping=domap)$score) ## Pik3cags if(dn.platform[i] == "affy") { domap <- FALSE } else { domap <- TRUE } rest <- cbind(rest, "PIK3CA"=pik3cags(data=ddata, annot=dannot, do.mapping=domap)) ## rorS # Uses the pam50 algorithm. Need to do mapping for both Affy and Agilent rest <- cbind(rest, "rorS"=rorS(data=ddata, annot=dannot, do.mapping=TRUE)$score) ## GENE76 # Mainly designed for Affy platforms. Has been excluded here # BIND ALL TOGETHER res <- rbind(res, rest) } names(ddemo.all) <- dn
For further analysis and handling of the data we store all information in one object. We also remove the duplicated patients from the analysis and take only those patients into account, that have complete information for nodal, survival and treatment status.
ddemot <- NULL for(i in 1:length(ddemo.all)) { ddemot <- rbind(ddemot, ddemo.all[[i]][ , ddemo.coln, drop=FALSE]) } res[complete.cases(ddemot[ ,"dataset"]) & ddemot[ ,"dataset"] == "VDX", "GENIUS"] <- NA ## select only untreated node-negative patients with all risk predictions ## ie(incomplete cases (where risk prediction may be missing for a sample) are subsequently removed)) # Note that increasing the number of risk prediction analyses # may increase the number of incomplete cases # In the previous vignette for genefu version1, we were only testing 4 risk predictors, # so we had a total of 722 complete cases remaining # Here, we are now testing 12 risk predictors, so we only have 713 complete cases remaining. # The difference of 9 cases between the two versions are all from the NKI dataset. myx <- complete.cases(res, ddemot[ , c("node", "treatment")]) & ddemot[ , "treatment"] == 0 & ddemot[ , "node"] == 0 & !is.element(rownames(ddemot), duPL) res <- res[myx, , drop=FALSE] ddemot <- ddemot[myx, , drop=FALSE]
To compare the risk score performances, we compute the concordance index\footnote{The same analysis could be performed with D index and hazard ratio by using the functions \Rfunction{D.index} and \Rfunction{hazard.ratio} from the \Rpackage{survcomp} package respectively}, which is the probability that, for a pair of randomly chosen comparable samples, the sample with the higher risk prediction will experience an event before the other sample or belongs to a higher binary class.
cc.res <- complete.cases(res) datasetList <- c("MAINZ","TRANSBIG","UPP","UNT","NKI") riskPList <- c("AURKA","ESR1","ERBB2","NPI", "GGI", "GENIUS", "EndoPredict","OncotypeDx","TAMR13","GENE70","PIK3CA","rorS") setT <- setE <- NULL resMatrix <- as.list(NULL) for(i in datasetList) { dataset.only <- ddemot[,"dataset"] == i patientsAll <- cc.res & dataset.only ## set type of available survival data if(i == "UPP") { setT <- "t.rfs" setE <- "e.rfs" } else { setT <- "t.dmfs" setE <- "e.dmfs" } # Calculate cindex computation for each predictor for (Dat in riskPList) { cindex <- t(apply(X=t(res[patientsAll,Dat]), MARGIN=1, function(x, y, z) { tt <- concordance.index(x=x, surv.time=y, surv.event=z, method="noether", na.rm=TRUE); return(c("cindex"=tt$c.index, "cindex.se"=tt$se, "lower"=tt$lower, "upper"=tt$upper)); }, y=ddemot[patientsAll,setT], z=ddemot[patientsAll, setE])) resMatrix[[Dat]] <- rbind(resMatrix[[Dat]], cindex) } }
Using a random-effects model we combine the dataset-specific performance estimated into overall estimates for each risk prediction model:
for(i in names(resMatrix)){ #Get a meta-estimate ceData <- combine.est(x=resMatrix[[i]][,"cindex"], x.se=resMatrix[[i]][,"cindex.se"], hetero=TRUE) cLower <- ceData$estimate + qnorm(0.025, lower.tail=TRUE) * ceData$se cUpper <- ceData$estimate + qnorm(0.025, lower.tail=FALSE) * ceData$se cindexO <- cbind("cindex"=ceData$estimate, "cindex.se"=ceData$se, "lower"=cLower, "upper"=cUpper) resMatrix[[i]] <- rbind(resMatrix[[i]], cindexO) rownames(resMatrix[[i]]) <- c(datasetList, "Overall") }
In order to compare the different risk prediction models we compute one-sided p-values of the meta-estimates:
pv <- sapply(resMatrix, function(x) { return(x["Overall", c("cindex","cindex.se")]) }) pv <- apply(pv, 2, function(x) { return(pnorm((x[1] - 0.5) / x[2], lower.tail=x[1] < 0.5)) }) printPV <- matrix(pv,ncol=length(names(resMatrix))) rownames(printPV) <- "P-value" colnames(printPV) <- names(pv) printPV<-t(printPV)
And print the table of P-values:
knitr::kable(printPV, digits=c(0, -1))
The following figures represent the risk score performances measured by the concordance index each of the prognostic predictors.
RiskPList <- c("AURKA","ESR1","ERBB2","NPI", "GGI", "GENIUS", "EndoPredict","OncotypeDx","TAMR13","GENE70","PIK3CA","rorS") datasetListF <- c("MAINZ","TRANSBIG","UPP","UNT","NKI", "Overall") myspace <- " " par(mfrow=c(2,2)) for (RP in RiskPList) { #<<forestplotDat,fig=TRUE>>= ## Forestplot tt <- rbind(resMatrix[[RP]][1:5,], "Overall"=resMatrix[[RP]][6,]) tt <- as.data.frame(tt) labeltext <- (datasetListF) r.mean <- c(tt$cindex) r.lower <- c(tt$lower) r.upper <- c(tt$upper) metaplot.surv(mn=r.mean, lower=r.lower, upper=r.upper, labels=labeltext, xlim=c(0.3,0.9), boxsize=0.5, zero=0.5, col=meta.colors(box="royalblue",line="darkblue",zero="firebrick"), main=paste(RP)) }
We can also represent the overall estimates across all prognostic predictors, across all the datasets.
## Overall Forestplot mybigspace <- " " tt <- rbind("OverallA"=resMatrix[["AURKA"]][6,], "OverallE1"=resMatrix[["ESR1"]][6,], "OverallE2"=resMatrix[["ERBB2"]][6,], "OverallN"=resMatrix[["NPI"]][6,], "OverallM"=resMatrix[["GGI"]][6,], "OverallG"=resMatrix[["GENIUS"]][6,], "OverallE3"=resMatrix[["EndoPredict"]][6,], "OverallOD"=resMatrix[["OncotypeDx"]][6,], "OverallT"=resMatrix[["TAMR13"]][6,], "OverallG70"=resMatrix[["GENE70"]][6,], "OverallP"=resMatrix[["PIK3CA"]][6,], "OverallR"=resMatrix[["rorS"]][6,] ) tt <- as.data.frame(tt) labeltext <- cbind(c("Risk Prediction","AURKA","ESR1","ERBB2","NPI", "GGI","GENIUS","EndoPredict","OncotypeDx","TAMR13","GENE70","PIK3CA","rorS")) r.mean <- c(NA,tt$cindex) r.lower <- c(NA,tt$lower) r.upper <- c(NA,tt$upper) metaplot.surv(mn=r.mean, lower=r.lower, upper=r.upper, labels=labeltext, xlim=c(0.35,0.75), boxsize=0.5, zero=0.5, col=meta.colors(box="royalblue",line="darkblue",zero="firebrick"), main="Overall Concordance Index")
In order to assess the difference between the risk scores,
we compute the concordance indices with their p-values and compare the estimates
with the cindex.comp.meta
with a paired student t test.
cc.res <- complete.cases(res) datasetList <- c("MAINZ","TRANSBIG","UPP","UNT","NKI") riskPList <- c("AURKA","ESR1","ERBB2","NPI","GGI","GENIUS", "EndoPredict","OncotypeDx","TAMR13","GENE70","PIK3CA","rorS") setT <- setE <- NULL resMatrixFull <- as.list(NULL) for(i in datasetList) { dataset.only <- ddemot[,"dataset"] == i patientsAll <- cc.res & dataset.only ## set type of available survival data if(i == "UPP") { setT <- "t.rfs" setE <- "e.rfs" } else { setT <- "t.dmfs" setE <- "e.dmfs" } ## cindex and p-value computation per algorithm for (Dat in riskPList) { cindex <- t(apply(X=t(res[patientsAll,Dat]), MARGIN=1, function(x, y, z) { tt <- concordance.index(x=x, surv.time=y, surv.event=z, method="noether", na.rm=TRUE); return(tt); }, y=ddemot[patientsAll,setT], z=ddemot[patientsAll, setE])) resMatrixFull[[Dat]] <- rbind(resMatrixFull[[Dat]], cindex) } } for(i in names(resMatrixFull)){ rownames(resMatrixFull[[i]]) <- datasetList } ccmData <- tt <- rr <- NULL for(i in 1:length(resMatrixFull)){ tt <- NULL for(j in 1:length(resMatrixFull)){ if(i != j) { rr <- cindex.comp.meta(list.cindex1=resMatrixFull[[i]], list.cindex2=resMatrixFull[[j]], hetero=TRUE)$p.value } else { rr <- 1 } tt <- cbind(tt, rr) } ccmData <- rbind(ccmData, tt) } ccmData <- as.data.frame(ccmData) colnames(ccmData) <- riskPList rownames(ccmData) <- riskPList
Table 2 displays the uncorrected p-values for the comparison of the different methods.
Table 3 displays the corrected p-values using the Holms method, to correct for multiple testing.
#kable(ccmData,format = "latex") knitr::kable(ccmData[,1:6], digits=c(0, rep(-1,ncol(ccmData[,1:6]))), size="footnotesize") knitr::kable(ccmData[,7:12], digits=c(0, rep(-1,ncol(ccmData[,7:12]))), size="footnotesize",caption="Uncorrected p-values for the Comparison of Different Methods")
ccmDataPval <- matrix(p.adjust(data.matrix(ccmData), method="holm"), ncol=length(riskPList), dimnames=list(rownames(ccmData), colnames(ccmData)))
knitr::kable(ccmDataPval[,1:6], digits=c(0, rep(-1,ncol(ccmDataPval[,1:6]))), size="footnotesize") knitr::kable(ccmDataPval[,7:12], digits=c(0, rep(-1,ncol(ccmDataPval[,7:12]))), size="footnotesize",caption="Corrected p-values Using the Holm Method")
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.