Description Usage Arguments Value See Also Examples
A mcmcarray object is returned by the
biips_pimh_samples or biips_pmmh_samples
functions to represent MCMC output of a given variable.
A mcmcarray.list object is a named list of mcmcarray objects
for different monitored variables.
The methods apply identically to mcmcarray or mcmcarray.list
objects and return a named list with the same named members as the input
object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | mcmcarray(data = NA, dim = length(data), dimnames = NULL,
iteration = length(dim), chain = NA, name = "mcmcarray", lower = NULL,
upper = NULL)
is.mcmcarray(object)
is.mcmcarray.list(object)
## S3 method for class 'mcmcarray'
biips_summary(object, probs = c(), order = ifelse(mode,
0, 1), mode = all(object == as.integer(object)), ...)
## S3 method for class 'mcmcarray.list'
biips_summary(object, ...)
## S3 method for class 'mcmcarray'
biips_table(x, ...)
## S3 method for class 'mcmcarray'
biips_density(x, bw = "nrd0", ...)
biips_hist(x, ...)
## S3 method for class 'mcmcarray'
biips_hist(x, main = NULL, xlab = NULL, ...)
## S3 method for class 'mcmcarray.list'
biips_table(x, ...)
## S3 method for class 'mcmcarray.list'
biips_density(x, bw = "nrd0", ...)
## S3 method for class 'mcmcarray.list'
biips_hist(x, main = NULL, xlab = NULL, ...)
## S3 method for class 'mcmcarray'
summary(object, ...)
## S3 method for class 'mcmcarray.list'
summary(object, ...)
## S3 method for class 'mcmcarray'
density(x, ...)
## S3 method for class 'mcmcarray.list'
density(x, ...)
## S3 method for class 'mcmcarray'
hist(x, ...)
## S3 method for class 'mcmcarray.list'
hist(x, ...)
|
data |
numerical vector |
dim |
vector of integers. dimension of the array |
dimnames |
character vector |
iteration |
integer. index of the dimension corresponding to iterations of the MCMC. |
chain |
integer. index of the dimension corresponding to chain of the MCMC. |
name |
string. variable name |
lower |
vector of integers. variable lower bound |
upper |
vector of integers. variable upper bound |
object, x |
a |
probs |
vector of reals. probability levels in ]0,1[ for quantiles.
(default = |
order |
integer. Moment statistics of order below or equal to
|
mode |
logical. Activate computation of the mode, i.e. the most
frequent value among the particles. (default = |
... |
additional arguments to be passed to the default methods. See
|
bw |
either a real with the smoothing bandwidth to be used or a string
giving a rule to choose the bandwidth. See |
main, xlab |
plotting parameters with useful defaults. |
The methods apply identically to mcmcarray or
mcmcarray.list objects and return a named list with the same named
members as the input object.
The mcmcarray function returns an object of class mcmcarray.
The function is.mcmcarray returns TRUE if the object is
of class mcmcarray.
The function is.mcmcarray.list returns TRUE if the
object is of class mcmcarray.list.
The method biips_summary returns univariate marginal
statistics. The output innermost members are objects of class
summary.mcmcarray, i.e. lists with members:
mean |
mean, if |
var |
variance, if |
skew |
skewness, if |
kurt |
kurtosis, if |
probs |
vector of quantile probabilities. |
quant |
list of quantile values, if |
mode |
most frequent values for discrete components. |
The method biips_table returns univariate marginal frequency
tables or probability mass estimates of discrete variables. The output
innermost members are objects of class table.mcmcarray.
The method biips_density returns univariate marginal kernel
density estimates. The output innermost members are objects of class
density.mcmcarray.
The method summary is an alias for biips_summary.
The method density is an alias for biips_density.
The method hist is an alias for biips_hist.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | modelfile <- system.file('extdata', 'hmm.bug', package = 'rbiips')
stopifnot(nchar(modelfile) > 0)
cat(readLines(modelfile), sep = '\n')
#' # PIMH algorithm
data <- list(tmax = 10, p = c(.5, .5), logtau_true = log(1), logtau = log(1))
model <- biips_model(modelfile, data, sample_data = TRUE)
n_part <- 50
obj_pimh <- biips_pimh_init(model, c('x', 'c[2:10]')) # Initialize
out_pimh_burn <- biips_pimh_update(obj_pimh, 100, n_part) # Burn-in
out_pimh <- biips_pimh_samples(obj_pimh, 100, n_part) # Samples
#' Manipulate `mcmcarray.list` object
is.mcmcarray.list(out_pimh)
names(out_pimh)
out_pimh
biips_summary(out_pimh)
#' Manipulate `mcmcarray` object
is.mcmcarray(out_pimh$x)
out_pimh$x
summ_pimh_x <- biips_summary(out_pimh$x, order = 2, probs = c(0.025, 0.975))
summ_pimh_x
dens_pimh_x <- biips_density(out_pimh$x)
par(mfrow = c(2, 2))
plot(dens_pimh_x)
par(mfrow = c(2, 2))
biips_hist(out_pimh$x)
is.mcmcarray(out_pimh[['c[2:10]']])
out_pimh[['c[2:10]']]
summ_pimh_c <- biips_summary(out_pimh[['c[2:10]']])
summ_pimh_c
table_pimh_c <- biips_table(out_pimh[['c[2:10]']])
par(mfrow = c(2, 2))
plot(table_pimh_c)
#' # PMMH algorithm
data <- list(tmax = 10, p = c(.5, .5), logtau_true = log(1))
model <- biips_model(modelfile, data)
n_part <- 50
obj_pmmh <- biips_pmmh_init(model, 'logtau', latent_names = c('x', 'c[2:10]'),
inits = list(logtau = -2)) # Initialize
out_pmmh_burn <- biips_pmmh_update(obj_pmmh, 100, n_part) # Burn-in
out_pmmh <- biips_pmmh_samples(obj_pmmh, 100, n_part, thin = 1) # Samples
#' Manipulate `mcmcarray.list` object
is.mcmcarray.list(out_pmmh)
names(out_pmmh)
out_pmmh
biips_summary(out_pmmh)
#' Manipulate `mcmcarray` object
is.mcmcarray(out_pmmh$logtau)
out_pmmh$logtau
summ_pmmh_lt <- biips_summary(out_pmmh$logtau, order = 2, probs = c(0.025, 0.975))
dens_pmmh_lt <- biips_density(out_pmmh$logtau)
par(mfrow = c(2, 1))
plot(dens_pmmh_lt)
biips_hist(out_pmmh$logtau)
is.mcmcarray(out_pmmh$x)
out_pmmh$x
summ_pmmh_x <- biips_summary(out_pmmh$x, order = 2, probs = c(0.025, 0.975))
dens_pmmh_x <- biips_density(out_pmmh$x)
par(mfrow = c(2, 2))
plot(dens_pmmh_x)
par(mfrow = c(2, 2))
biips_hist(out_pmmh$x)
is.mcmcarray(out_pmmh[['c[2:10]']])
out_pmmh[['c[2:10]']]
summ_pmmh_c <- biips_summary(out_pmmh[['c[2:10]']])
table_pmmh_c <- biips_table(out_pmmh[['c[2:10]']])
par(mfrow = c(2, 2))
plot(table_pmmh_c)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.