#' @title Annotate the vector integrated site by genes and transcription start sites (TSS).
#'
#' @description This function uses Gene and TSS database to search the feature of integrated regions.
#' User can get query sequence inserted in gene and distribution graphes from Gene and TSS coordinations.
#' Plus, user can do random distribution analysis by this function.
#'
#' @usage annoByGene(hits, randomSet = NULL, mapTool = 'blast', organism = 'hg19', interval = 5000, range = c(-20000, 20000),
#` outpath = '~', dbPath = paste0(.libPaths()[1], '/IRFinder/extdata'))
#'
#' @param hits a GR object. This object made from *makeInputs* function.
#' @param randomSet a string vector. Type path to load a random set.
#' If this value is null, random distribution analysis is not executed.
#' @param mapTool a character. Function serve two types of file such as outputs from BLAST and BLAT.
#' Default is 'blast'. If you want to use BLAT output, use 'blast'.
#' @param organism a single character. This function serves 3 versions of organisms such as hg19, hg38 (Human)
#' and galGal6 (Chicken). Default is 'hg19'.
#' @param interval an integer vector. This number means interval number for distribution analysis. Default is 5000.
#' @param range an integer array. It means the range for highlight region of this analysis. Default range is c(-20000, 20000).
#' @param outpath an string vector. Plots are saved in this path. Default value is R home directory.
#' @param dbPath a string vector. Directory path of database files.
#'
#' @return Return a result list constituted by insertion table (Gene), distribution table (Gene/TSS) and GRobject of Gene and TSS data.
#'
#'
#' @export
annoByGene = function(hits, randomSet = NULL, mapTool = 'blast', organism = 'hg19', interval = 5000, range = c(-20000, 20000),
outpath = '~', dbPath = paste0(.libPaths()[1], '/IRFinder/extdata')){
library(GenomicRanges); library(stringr); library(grDevices); library(regioneR)
cat('---------- Annotation integrated sites : Genes / TSSs ----------\n')
cat(paste0('Start time : ', date(), '\n'))
if(length(which(c('hg19', 'hg38', 'galGal6') %in% organism)) == 0){
return(cat("You can use hg19/hg38/galGal6 data only. ( Input : ", paste(organism, collapse = ','), ")\n",
'---------- Annotation process is halted. ----------\nFinish time : ', date(), '\n'))
} else {}
cat('---------- Loading a gene table ----------\n')
#### 01. Load a gene table
tab_loc = paste0(dbPath, '/Ensembl_gene_', organism, '.txt')
#tab_loc = system.file('extdata', paste0('Ensembl_gene_', organism, '.txt'), package = 'IRFinder')
dataTable = read.delim(tab_loc, stringsAsFactors = FALSE, header = TRUE)
dataTable = subset(dataTable, dataTable$hgnc_symbol != '') # Delete genes that are not have hugo symbol
dataTable = subset(dataTable, str_detect(dataTable$chromosome_name, '_') == FALSE)
dataTable$chromosome_name = paste0('chr', dataTable$chromosome_name)
cat('Done.\n')
cat('---------- Creating a GRanges object ----------\n')
#### 02. Make GR object by a gene table
gr_genes = regioneR::toGRanges(dataTable[,c(6,7,8,9,1,2,13,14)])
gr_tss = regioneR::toGRanges(dataTable[,c(6,12,12,1,3,14)])
#### 03. Make interval GR objects of a gene table
ranges = seq(from = range[1], to = range[2], interval)
gr_genes_dist = vector("list", length = (length(ranges)-1))
for(x in 1:(length(ranges)-1)){
tmp_start = gr_genes@ranges@start + ranges[x]
tmp_end = gr_genes@ranges@start + ranges[x+1]-1
gr_genes_dist[[x]] = GRanges(seqnames = as.character(gr_genes@seqnames),
ranges = IRanges(start = tmp_start,
end = tmp_end),
strand = '*')
}
gr_tss_dist = vector("list", length = (length(ranges)-1))
for(x in 1:(length(ranges)-1)){
tmp_start = gr_tss@ranges@start + ranges[x]
tmp_end = gr_tss@ranges@start + ranges[x+1]-1
gr_tss_dist[[x]] = GRanges(seqnames = as.character(gr_tss@seqnames),
ranges = IRanges(start = tmp_start,
end = tmp_end),
strand = '*')
}
#### 04. Make random GR object
if(!is.null(randomSet)){
tmp = read.delim(file = randomSet, header = TRUE, stringsAsFactors = FALSE)
gr_random = regioneR::toGRanges(tmp[,c(2,3,3)])
} else {
cat("[WARN] Random distribution analysis will not be executed.\n")
}
cat('Done.\n')
cat('---------- Annotating integrated regions ----------\n')
#### 05. Make gene information
inside_gene = as.data.frame(findOverlaps(hits, gr_genes, type = 'any',
ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(hits[inside_gene$queryHits,], stringsAsFactors = FALSE)
b = dataTable[inside_gene$subjectHits,]
inside_tab = cbind(a,b)
if(!is.null(randomSet)){
inside_gene_ran = as.data.frame(findOverlaps(gr_random, gr_genes, type = 'any', ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(gr_random[inside_gene_ran$queryHits,], stringsAsFactors = FALSE)
b = dataTable[inside_gene_ran$subjectHits,]
inside_ran_tab = cbind(a,b)
dist_gene_ran = vector("list", length = length(ranges)-1)
dist_tss_ran = vector("list", length = length(ranges)-1)
dist_gene_ran_tab = data.frame(stringsAsFactors = FALSE)
dist_tss_ran_tab = data.frame(stringsAsFactors = FALSE)
} else {}
dist_gene = vector("list", length = length(ranges)-1)
dist_tss = vector("list", length = length(ranges)-1)
dist_gene_tab = data.frame(stringsAsFactors = FALSE)
dist_tss_tab = data.frame(stringsAsFactors = FALSE)
for(x in 1:(length(ranges)-1)){
dist_gene[[x]] = as.data.frame(findOverlaps(query = hits,
subject = gr_genes_dist[[x]],
type = "any", ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(hits[dist_gene[[x]]$queryHits,], stringsAsFactors = FALSE)
b = dataTable[dist_gene[[x]]$subjectHits,]
tmp1 = cbind(a,b)
dist_tss[[x]] = as.data.frame(findOverlaps(query = hits,
subject = gr_tss_dist[[x]],
type = "any", ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(hits[dist_tss[[x]]$queryHits,], stringsAsFactors = FALSE)
b = dataTable[dist_tss[[x]]$subjectHits,]
tmp2 = cbind(a,b)
dist_gene_tab = rbind(dist_gene_tab, tmp1)
dist_tss_tab = rbind(dist_tss_tab, tmp2)
if(!is.null(randomSet)){
dist_gene_ran[[x]] = as.data.frame(findOverlaps(query = gr_random,
subject = gr_genes_dist[[x]],
type = "any", ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(gr_random[dist_gene_ran[[x]]$queryHits,], stringsAsFactors = FALSE)
b = dataTable[dist_gene_ran[[x]]$subjectHits,]
tmp1 = cbind(a,b)
dist_tss_ran[[x]] = as.data.frame(findOverlaps(query = gr_random,
subject = gr_tss_dist[[x]],
type = "any", ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(gr_random[dist_tss_ran[[x]]$queryHits,], stringsAsFactors = FALSE)
b = dataTable[dist_tss_ran[[x]]$subjectHits,]
tmp2 = cbind(a,b)
dist_gene_ran_tab = rbind(dist_gene_ran_tab, tmp1)
dist_tss_ran_tab = rbind(dist_tss_ran_tab, tmp2)
} else {}
}
#### 06. Count the number of hit in each range
count_hit_genes = vector("list", length = length(ranges)-1)
count_hit_tss = vector("list", length = length(ranges)-1)
if(!is.null(randomSet)){
count_hit_genes_ran = vector("list", length = length(ranges)-1)
count_hit_tss_ran = vector("list", length = length(ranges)-1)
} else {}
for(x in 1:(length(ranges)-1)){
count_hit_genes[[x]] = countOverlaps(query = hits, subject = gr_genes_dist[[x]], type = "any", ignore.strand = TRUE)
count_hit_tss[[x]] = countOverlaps(query = hits, subject = gr_tss_dist[[x]], type = "any", ignore.strand = TRUE)
if(!is.null(randomSet)){
count_hit_genes_ran[[x]] = countOverlaps(query = gr_random, subject = gr_genes_dist[[x]], type = "any", ignore.strand = TRUE)
count_hit_tss_ran[[x]] = countOverlaps(query = gr_random, subject = gr_tss_dist[[x]], type = "any", ignore.strand = TRUE)
} else {}
}
hits_gene = as.numeric(apply(as.data.frame(count_hit_genes, stringsAsFactors = FALSE), MARGIN = 2, sum))
hits_tss = as.numeric(apply(as.data.frame(count_hit_tss, stringsAsFactors = FALSE), MARGIN = 2, sum))
if(!is.null(randomSet)){
hits_gene_ran = as.numeric(apply(as.data.frame(count_hit_genes_ran, stringsAsFactors = FALSE), MARGIN = 2, sum))
hits_tss_ran = as.numeric(apply(as.data.frame(count_hit_tss_ran, stringsAsFactors = FALSE), MARGIN = 2, sum))
} else {}
#### 07. Drawing histograms
ymax_g = max(hits_gene); ymax_t = max(hits_tss)
mid = vector("numeric", length = (length(ranges)-1))
for(x in 1:(length(ranges)-1)){
mid[x] = (ranges[x] + ranges[x+1])/2
}
freq_sites_gene = rep(x = mid, times = hits_gene)
freq_sites_tss = rep(x = mid, times = hits_tss)
if(!is.null(randomSet)){
freq_sites_gene_ran = rep(x = mid, times = hits_gene_ran)
freq_sites_tss_ran = rep(x = mid, times = hits_tss_ran)
} else {}
cat('Done.\n')
cat('---------- Drawing histograms ----------\n')
## Gene
png(filename = paste0(outpath, '/Distribution_gene_', organism, '.png'),
width = 1200, height = 700)
hist_frequency = hist(freq_sites_gene/1000, ylim = c(0, ceiling(ymax_g * 1.1)), breaks = ranges/1000,
ylab = '#Integration events', xlab = "kbs",
probability = FALSE, main = NULL, col = 'cornflowerblue',
axes = FALSE, cex.lab = 1.5)
axis(side = 1, at = ranges/1000, cex.axis = 1.5)
axis(side = 2, at = seq(0, ceiling(ymax_g * 1.1), 1), cex.axis = 1.5)
text(0, ceiling(ymax_g * 1.1), labels = 'Gene', cex = 2, font = 2)
arrows(0,0,0,ceiling(ymax_g * 1.1)*0.95, length = 0.15, code = 1, lwd = 3)
arrows(min(ranges/1000), ceiling(ymax_g * 1.1)*0.95, range[1]/1000*0.025, ceiling(ymax_g * 1.1)*0.95, length = 0.1, code = 1)
arrows(max(ranges/1000), ceiling(ymax_g * 1.1)*0.95, range[2]/1000*0.025, ceiling(ymax_g * 1.1)*0.95, length = 0.1, code = 1)
text(range[2]/2000, ceiling(ymax_g * 1.1)*0.9, 'Upstream', cex = 1.5, col = 'black')
text(-(range[2]/2000), ceiling(ymax_g * 1.1)*0.9, 'Downstream', cex = 1.5, col = 'black')
dev.off()
if(!is.null(randomSet)){
count_sites_gene = plyr::count(freq_sites_gene)[,2]
count_sites_gene_ran = plyr::count(freq_sites_gene_ran)[,2]
count_data = rbind(count_sites_gene, count_sites_gene_ran)
png(paste0(outpath, '/Random_distribution_gene_', organism, '.png'), width = 1200, height = 750)
barplot(count_data, beside = TRUE, ylim = c(0, (max(count_data)+2)),
main = "Random distribution (Gene)", xlab = 'Intervals (Kbs)', ylab = "#Integration events",
col = c('Dodgerblue', 'skyblue'), names.arg = ranges[c(1:((length(ranges)-1)/2), ((length(ranges)+3)/2):length(ranges))])
dev.off()
} else {}
## TSS
png(filename = paste0(outpath, '/Distribution_TSS_', organism, '.png'),
width = 1200, height = 700)
hist_frequency = hist(freq_sites_tss/1000, ylim = c(0, ceiling(ymax_t * 1.1)), breaks = ranges/1000,
ylab = '#Integration events', xlab = "kbs",
probability = FALSE, main = NULL, col = 'cornflowerblue',
axes = FALSE, cex.lab = 1.5)
axis(side = 1, at = ranges/1000, cex.axis = 1.5)
axis(side = 2, at = seq(0, ceiling(ymax_t * 1.1), 1), cex.axis = 1.5)
text(0, ceiling(ymax_t * 1.1), labels = 'TSS', cex = 2, font = 2)
arrows(0, 0, 0, ceiling(ymax_t * 1.1)*0.95, length = 0.15, code = 1, lwd = 3)
arrows(min(ranges/1000), ceiling(ymax_t * 1.1)*0.95, range[1]/1000*0.025, ceiling(ymax_t * 1.1)*0.95, length = 0.1, code = 1)
arrows(max(ranges/1000), ceiling(ymax_t * 1.1)*0.95, range[2]/1000*0.025, ceiling(ymax_t * 1.1)*0.95, length = 0.1, code = 1)
text(range[2]/2000, ceiling(ymax_t * 1.1)*0.9, 'Upstream', cex = 1.5, col = 'black')
text(-(range[2]/2000), ceiling(ymax_t * 1.1)*0.9, 'Downstream', cex = 1.5, col = 'black')
dev.off()
if(!is.null(randomSet)){
count_sites_tss = plyr::count(freq_sites_tss)[,2]
count_sites_tss_ran = plyr::count(freq_sites_tss_ran)[,2]
count_data_tss = rbind(count_sites_tss, count_sites_tss_ran)
png(paste0(outpath, '/Random_distribution_tss_', organism, '.png'), width = 1200, height = 750)
barplot(count_data_tss, beside = TRUE, ylim = c(0, round(max(count_data_tss), -2)),
main = "Random distribution (TSS)", xlab = 'Intervals (Kbs)', ylab = "#Integration events",
col = c('Dodgerblue', 'skyblue'), names.arg = ranges[c(1:((length(ranges)-1)/2), ((length(ranges)+3)/2):length(ranges))])
dev.off()
} else {}
if(!is.null(randomSet)){
result_list = vector("list", length = 7)
result_list[[1]] = inside_tab
result_list[[2]] = dist_gene_tab
result_list[[3]] = dist_gene_ran_tab
result_list[[4]] = gr_genes
result_list[[5]] = dist_tss_tab
result_list[[6]] = dist_tss_ran_tab
result_list[[7]] = gr_tss
names(result_list) = c('Gene_inside_hits', 'Gene_exp_distribution', 'Gene_random_distribution', 'Gene_data',
'TSS_exp_distribution', 'TSS_random_distribution', 'TSS_data')
} else {
result_list = vector("list", length = 5)
result_list[[1]] = inside_tab
result_list[[2]] = dist_gene_tab
result_list[[3]] = gr_genes
result_list[[4]] = dist_tss_tab
result_list[[5]] = gr_tss
names(result_list) = c('Gene_inside_hits', 'Gene_exp_distribution', 'Gene_data', 'TSS_exp_distribution', 'TSS_data')
}
cat('---------- Annotation process is finished. ----------\n')
cat(paste0('Finish time : ', date(), '\n'))
return(result_list)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.