annt.model.prod <-
function(x, year=-1, trend=100, offset=TRUE, cl=0.95){
cesdata <- x # we're going to need this later, annoyingly
year <- ifelse(year==-1, min(x[[1]]$year, na.rm=TRUE), year)
ad <- x$ad.data[ , c('site','year','totcaps','corrcaps') ]
names(ad)<-c('site','year','adcaps','adexcaps')
jv <- x$jv.data[ , c('site','year','totcaps','corrcaps') ]
names(jv)<-c('site','year','jvcaps','jvexcaps')
x <- merge(ad, jv, by=c('site', 'year'), all.x=TRUE)
x[is.na(x)] <- 0
x$totcaps <- x$adcaps + x$jvcaps
x$totexcaps <- x$adexcaps + x$jvexcaps
x <- x[x$totcaps>0, ] # no birds caught so doesn't contribute to model fit
if (offset) {
x <- calc.offset(x)
} else {
x$offset <- 0
}
nyrs<-max(x$year)-min(x$year)+1
if ( nyrs > trend ) {
ybreak <- max(x$year) - trend
x$yearf <- ifelse ( x$year > ybreak, 0, x$year )
x$yeart <- ifelse ( x$year > ybreak, x$year-ybreak, 0 )
if( length(table(x$site)) > 1 )
x.lm <- glm(as.matrix(cbind(jvcaps,adcaps)) ~ as.factor(site) + as.factor(yearf) + yeart, family="quasibinomial", offset=offset, data=x)
else
x.lm <- glm(as.matrix(cbind(jvcaps,adcaps)) ~ as.factor(yearf) + yeart, family="quasibinomial", offset=offset, data=x)
yearf1 <- c(min(x$yearf[x$yearf>0]):max(x$yearf),rep(0,trend))
yeart1 <- c(rep(0,length(yearf1)-trend),c(1:trend))
newdata <- as.data.frame(cbind(yearf=yearf1,site=rep(min(as.numeric(x.lm$xlevels[[1]])),nyrs)))
newdata$yeart <- c(rep(0,length(yearf1)-trend),c(1:trend)) # do separately to avoid factor conversion
}
else {
x$yeart <- x$year # for compatibility with above
if( length(table(x$site)) > 1 )
x.lm <- glm(as.matrix(cbind(jvcaps,adcaps)) ~ as.factor(site) + yeart, family=quasibinomial, offset=offset, data=x)
else
x.lm <- glm(as.matrix(cbind(jvcaps,adcaps)) ~ yeart, family=quasibinomial, offset=offset, data=x)
newdata <- as.data.frame(cbind(site=rep(min(as.numeric(x.lm$xlevels[[1]])),nyrs)))
newdata$yeart <- c(min(x$yeart):max(x$yeart))
}
ann.vals <- ann.model.prod(list(ad.data=cesdata$ad.data, jv.data=cesdata$jv.data), year)$parms$parm
x.pred <- predict(x.lm, newdata, se.fit=TRUE)
x.pred$fit <- x.pred$fit + (mean(ann.vals) - mean(x.pred$fit))
years <- c(min(x$year):max(x$year))
res <- cbind(years, data.frame(cbind(parm=x.pred$fit,se=x.pred$se))) # necessary to stop factor conversion!
res$index <- exp(res$parm) # NOTE: log back-transform rather than logistic!! gives no jv per ad
# rather simply ppn jvs
res$annual <- exp(ann.vals)
cl.int <- qnorm(1-((1-cl)/2))
res$lcl <- exp(res$parm - cl.int * res$se)
res$ucl <- exp(res$parm + cl.int * res$se)
parno <- grep('^yeart',names(coef(x.lm)))
slope <- coef(x.lm)[parno]
slope.se <- sqrt(diag(vcov(x.lm)))[parno]
tval <- slope/slope.se
tsig <- 2*pt(abs(tval), x.lm$rank, lower.tail=FALSE)
list(model=x.lm, parms=res,
test=list(type='trend',nyrs=trend,slope=slope,slope.se=slope.se,tval=tval,tsig=tsig))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.