R/methods_GPA.R

# generic methods for "GPA" class
setMethod(
  f = "get_fit",
  signature = "GPA",
  definition = function(x) x@fit
)

setMethod(
  f = "get_setting",
  signature = "GPA",
  definition = function(x) x@setting
)

setMethod(
  f = "get_gwasPval",
  signature = "GPA",
  definition = function(x) x@gwasPval
)

setMethod(
  f = "get_annMat",
  signature = "GPA",
  definition = function(x) x@annMat
)

setMethod(
    f="show",
    signature="GPA",
    definition=function( object ) {
        # summary of GPA fit

		vDigit <- 1000

        # constants

		nBin <- nrow(get_gwasPval(object))
		nGWAS <- ncol(get_gwasPval(object))
		nAnn <- ncol(get_annMat(object))

		binaryList <- vector( "list", nGWAS )
		for ( k in seq_len(nGWAS) ) {
			binaryList[[k]] <- c( 0, 1 )
		}
		binaryMat <- expand.grid( binaryList )

		nComp <- nrow(binaryMat)
		combVec <- apply( binaryMat, 1, function(bm) paste( bm, collapse="" ) )

        # parameters for GPA

		emSetting <- get_setting(object)

		pis <- get_fit(object)$pis
		betaAlpha <- get_fit(object)$betaAlpha
		if ( emSetting$empiricalNull ) {
			betaAlphaNull <- get_fit(object)$betaAlphaNull
		}
		q1 <- get_fit(object)$q1

		nPis <- length(pis)
		nAlpha <- length(betaAlpha)

		# estimate covariance matrix

		covMat <- cov( object, silent=TRUE )
		seVec <- sqrt(diag(covMat))

		# SE for pi00, using Delta method

		piSE <- seVec[ seq_len(nPis-1) ]
		gderiv <- as.matrix( c( rep( -1, (nPis-1) ),
                        rep( 0, nrow(covMat) - (nPis-1) ) ) )
		pi00SE <- sqrt( t(gderiv) %*% covMat %*% gderiv )

		piSE <- c( pi00SE, piSE )

		betaAlphaSE <- seVec[ seq(from = (nPis-1+1), to = (nPis-1+nAlpha), by = 1) ]
		if ( emSetting$empiricalNull ) {
			betaAlphaNullSE <- seVec[ seq(from = (nPis-1+nAlpha+1),
      to = (nPis-1+nAlpha+nAlpha), by = 1) ]
		}

		# output

        cat( "Summary: GPA model fitting results (class: GPA)\n" )
        cat( "--------------------------------------------------\n" )
        cat( "Data summary:\n" )
        cat( "\tNumber of GWAS data: ", nGWAS , "\n", sep="" )
		cat( "\tNumber of SNPs: ", nBin , "\n", sep="" )
        if ( emSetting$useAnn ) {
			cat( "\tNumber of annotation data: ", nAnn, "\n", sep="" )
		} else {
			cat( "\tNumber of annotation data: (not provided)\n", sep="" )
		}
		cat( "Model setting:\n" )
        if ( emSetting$empiricalNull ) {
			cat( "\tNull distribution is empirically estimated.\n" )
		} else {
			cat( "\tTheoretical null distribution is assumed.\n" )
		}
        if ( emSetting$pleiotropyH0 ) {
			cat( "\tGPA is fitted under H0 of pleiotropy LRT.\n" )
		}
		cat( "Parameter estimates (standard errors):\n" )
		cat( "\talpha: ", paste( round(betaAlpha*vDigit)/vDigit, collapse=" " ),
                             "\n", sep="" )
		cat( "\t     ( ", paste( round(betaAlphaSE*vDigit)/vDigit, collapse=" " ), " )",
                             "\n", sep="" )
        if ( emSetting$empiricalNull ) {
			cat( "\talphaNull: ", paste( round(betaAlphaNull*vDigit)/vDigit, collapse=" " ),
                                    "\n", sep="" )
			cat( "\t  ( ", paste( round(betaAlphaNullSE*vDigit)/vDigit, collapse=" " ),
                            " )", "\n", sep="" )
		}
		cat( "\tGWAS combination: ", paste( combVec, collapse=" " ), "\n", sep="" )
		cat( "\tpi: ", paste( round(pis*vDigit)/vDigit, collapse=" " ), "\n", sep="" )
		cat( "\t  ( ", paste( round(piSE*vDigit)/vDigit, collapse=" " ), " )", "\n",
                                sep="" )
		if ( emSetting$useAnn ) {
			cat( "\tq:\n" )
			for ( d in seq_len(nAnn) ) {
				cat( "\tAnnotation #",d,":\n", sep="" )
				cat( "\t    ", paste( round(q1[d,]*vDigit)/vDigit, collapse=" " ), "\n",
                                    sep="" )

				if ( emSetting$empiricalNull ) {
					locQ1 <- (nPis-1+2*nAlpha+nPis*(d-1)+1):(nPis-1+2*nAlpha+nPis*d)
				} else {
					locQ1 <- (nPis-1+nAlpha+nPis*(d-1)+1):(nPis-1+nAlpha+nPis*d)
				}
				cat( "\t  ( ", paste( round(seVec[locQ1]*vDigit)/vDigit, collapse=" " ),
                                    " )", "\n", sep="" )
			}
		}
		if ( emSetting$useAnn ) {
			q1ratio <- q1ratioSE <- matrix( NA, nrow(q1), (ncol(q1)-1) )
			for ( d in seq_len(nAnn) ) {
				# estimates

				q1ratio[d,] <- q1[d,-1] / q1[d,1]

				# SE

				for ( j in 2:ncol(q1) ) {
					qderiv <- rep( 0, nrow(q1)*ncol(q1) )
					qderiv[ ncol(q1) * (d-1) + 1 ] <- - q1[d,j] / q1[d,1]^2
					qderiv[ ncol(q1) * (d-1) + j ] <- 1 / q1[d,1]

					gderiv <- as.matrix( c( rep( 0, nrow(covMat) - nrow(q1)*ncol(q1) ),
                                      qderiv ) )
					q1ratioSE[d,(j-1)] <- sqrt( t(gderiv) %*% covMat %*% gderiv )
				}
			}

			cat( "\n" )
			cat( "\tRatio of q over baseline (",combVec[1],"):\n", sep="" )
			cat( "\tGWAS combination: ", paste( combVec[-1], collapse=" " ),"\n", sep="" )
			for ( d in seq_len(nAnn) ) {
				cat( "\tAnnotation #",d,":\n", sep="" )
				cat( "\t    ", paste( round(q1ratio[d,]*vDigit)/vDigit, collapse=" " ),
                                    "\n", sep="" )
				cat( "\t  ( ", paste( round(q1ratioSE[d,]*vDigit)/vDigit, collapse=" " ),
                                    " )", "\n", sep="" )
			}
		}
        cat( "--------------------------------------------------\n" )
    }
)

setMethod(
    f="print",
    signature="GPA",
    definition=function( x ) {
        # return posterior probability matrix

		return(get_fit(x)$Z)
    }
)

setMethod(
    f="fdr",
    signature="GPA",
    definition=function( object, pattern=NULL ) {
      if ( is.null(pattern) ) {
        # if pattern is not specified, return marginal local FDR

		margfdr <- 1 - get_fit(object)$Zmarg
		colnames(margfdr) <- colnames(get_gwasPval(object))

		return(margfdr)
      } else {
        # if pattern is provided, return FDR matching the pattern

        ppmat <- print(object)

        # parse pattern & convert it to regular expression

        ptvec <- strsplit( pattern, "" )[[1]]
        if ( length(grep( "(1|\\*)", ptvec )) < length(ptvec) ) {
          stop( "Invalid 'pattern' argument! Please use only '1' or '*' for the pattern." )
        }
        ptreg <- paste( gsub( "\\*", "(0|1)", ptvec ), collapse="" )
        locp <- grep( ptreg, colnames(ppmat) )

        # return related FDR

        if ( length(locp) > 0 ) {
          psel <- 1 - rowSums(ppmat[ , locp, drop=FALSE ])
          return(psel)
        } else {
          stop( "Invalid 'pattern' argument! Please provide correct pattern." )
        }
      }
    }
)

setMethod(
    f="cov",
    signature="GPA",
    definition=function( object, silent=FALSE, vDigitEst=1000, vDigitSE=1000, ... ) {
        # calculate covariance matrix using empirical information matrix

		.covGPA( object, silent=silent, vDigitEst=vDigitEst, vDigitSE=vDigitSE )
    }
)

setMethod(
    f="se",
    signature="GPA",
    definition=function( object, ... ) {
        # return estimates & standard error

		# covariance matrix

		covEst <- .covGPA( object, silent=TRUE, vDigitEst=1000, vDigitSE=1000 )
		seVec <- list()

		# extract estimates

		empiricalNull <- get_setting(object)$empiricalNull
		useAnn <- get_setting(object)$useAnn

		pis <- get_fit(object)$pis
		betaAlpha <- get_fit(object)$betaAlpha
		if ( empiricalNull ) {
			betaAlphaNull <- get_fit(object)$betaAlphaNull
		}

		nGWAS <- length(betaAlpha)

		if ( useAnn ) {
			q1 <- get_fit(object)$q1
			nAnn <- nrow(q1)
		}

		# extract information from estimates

		binaryList <- vector( "list", nGWAS )
		for ( k in seq_len(nGWAS) ) {
			binaryList[[k]] <- c( 0, 1 )
		}
		binaryMat <- expand.grid( binaryList )

		nComp <- nrow(binaryMat)
		combVec <- apply( binaryMat, 1, function(bm) paste( bm, collapse="" ) )

		nPis <- length(pis)
		nAlpha <- length(betaAlpha)

		if ( useAnn ) {
			nQ1 <- nAnn * nComp
		}

		# SE for pi, using Delta method

		piSE <- sqrt(diag(covEst))[ seq_len(nPis-1) ]
		gderiv <- as.matrix( c( rep( -1, (nPis-1) ),
			rep( 0, nrow(covEst) - (nPis-1) ) ) )
		pi00SE <- sqrt( t(gderiv) %*% covEst %*% gderiv )

		piSE <- c( pi00SE, piSE )
		names(piSE)[1] <- paste("pi_",names(pis)[1],sep="")

		# return estimates and SE

		locPi <- seq_len(nPis-1)
		locAlpha <- seq(from = (nPis-1+1),to = (nPis-1+nAlpha),by = 1)

		seVec$betaAlpha <- sqrt(diag(covEst))[locAlpha]

		if ( empiricalNull ) {
			locAlpha0 <- seq(from = (nPis-1+nAlpha+1),to = (nPis-1+nAlpha+nAlpha), by = 1)
			seVec$betaAlphaNull <- sqrt(diag(covEst))[locAlpha0]
		}

		seVec$pis <- piSE

		if ( useAnn ) {
			# q

			seVec$q1 <- c()
			for ( d in seq_len(nAnn) ) {
				if ( empiricalNull ) {
					locQ1 <- seq((nPis-1+2*nAlpha+nPis*(d-1)+1),(nPis-1+2*nAlpha+nPis*d))
				} else {
					locQ1 <- seq((nPis-1+nAlpha+nPis*(d-1)+1),(nPis-1+nAlpha+nPis*d))
				}

				seVec$q1 <- rbind( seVec$q1, sqrt(diag(covEst))[locQ1] )
			}

			# ratio of q

			q1ratioSE <- matrix( NA, nrow(q1), (ncol(q1)-1) )
			for ( d in seq_len(nAnn) ) {
				for ( j in seq(1,ncol(q1)) ) {
					qderiv <- rep( 0, nrow(q1)*ncol(q1) )
					qderiv[ ncol(q1) * (d-1) + 1 ] <- - q1[d,j] / q1[d,1]^2
					qderiv[ ncol(q1) * (d-1) + j ] <- 1 / q1[d,1]

					gderiv <- as.matrix( c( rep( 0, nrow(covEst) - nrow(q1)*ncol(q1) ), qderiv ) )
					q1ratioSE[d,(j-1)] <- sqrt( t(gderiv) %*% covEst %*% gderiv )
				}
			}

			seVec$q1ratio <- q1ratioSE
		}

		return( seVec )
    }
)

setMethod(
    f="estimates",
    signature="GPA",
    definition=function( object, ... ) {
        # return parameter estimates

		paramEst <- list()

		paramEst$pis <- get_fit(object)$pis
		paramEst$betaAlpha <- get_fit(object)$betaAlpha
		if ( get_setting(object)$empiricalNull ) {
			paramEst$betaAlphaNull <- get_fit(object)$betaAlphaNull
		}
		if ( get_setting(object)$useAnn ) {
			paramEst$q1 <- get_fit(object)$q1

			# ratio of q

			paramEst$q1ratio <- matrix( NA, nrow(paramEst$q1), (ncol(paramEst$q1)-1) )
			for ( d in seq_len(nrow(paramEst$q1)) ) {
				paramEst$q1ratio[d,] <- paramEst$q1[d,-1] / paramEst$q1[d,1]
			}
		}

		return(paramEst)
    }
)
carter-allen/GPA documentation built on April 21, 2020, 11:18 a.m.