Description Usage Arguments Value Author(s) References See Also Examples
The performance of classifiers can be evaluted by six different
measures and two different schemes that are described more precisely
below.
For S4 method information, s. evaluation-methods
.
1 2 |
clresult |
A list of objects of class |
cltrain |
An object of class |
cost |
An optional cost matrix used if |
y |
A vector containing the true class labels. Only needed if |
measure |
Peformance measure to be used:
|
scheme |
|
An object of class evaloutput
.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Christoph Bernau bernau@ibe.med.uni-muenchen.de
Efron, B. and Tibshirani, R. (1997).
Improvements on cross-validation: The .632+ bootstrap method.
Journal of the American Statistical Association, 92, 548-560.
Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package for supervised classification with high dimensional data. BMC Bioinformatics 9: 439
evaloutput
, classification
, compare
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ### simple linear discriminant analysis example using bootstrap datasets:
### datasets:
data(golub)
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,2:11])
### generate 25 bootstrap datasets
set.seed(333)
bootds <- GenerateLearningsets(y = golubY, method = "bootstrap", ntrain = 30, niter = 10, strat = TRUE)
### run classification()
ldalist <- classification(X=golubX, y=golubY, learningsets = bootds, classifier=ldaCMA)
### Evaluation:
eval_iter <- evaluation(ldalist, scheme = "iter")
eval_obs <- evaluation(ldalist, scheme = "obs")
show(eval_iter)
show(eval_obs)
summary(eval_iter)
summary(eval_obs)
### auc with boxplot
eval_auc <- evaluation(ldalist, scheme = "iter", measure = "auc")
boxplot(eval_auc)
### which observations have often been misclassified ?
obsinfo(eval_obs, threshold = 0.75)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.