Description Usage Arguments Value Note Author(s) References See Also Examples
This method provides access to the function
nnet
in the package of the same name that trains
Feed-forward Neural Networks with one hidden layer.
For S4
method information, see nnetCMA-methods
1 |
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
eigengenes |
Should the training be performed be in the space of
eigengenes obtained from a singular value decomposition
of the Gene expression data matrix ? Default is |
models |
a logical value indicating whether the model object shall be returned |
... |
Further arguments passed to the function
|
An object of class cloutput
.
Excessive variable selection is usually necessary if eigengenes = FALSE
Different runs of this method on the same dataset not necessarily produce the same results due to the fact that optimization for Feed-Forward Neural Networks is rather difficult and depends on the choice of (normally randomly chosen) starting values for the network weights.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Christoph Bernau bernau@ibe.med.uni-muenchen.de
Ripley, B.D. (1996)
Pattern Recognition and Neural Networks.
Cambridge University Press
compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
, LassoCMA
,
nnetCMA
, pknnCMA
, plrCMA
,
pls_ldaCMA
, pls_lrCMA
, pls_rfCMA
,
pnnCMA
, qdaCMA
, rfCMA
,
scdaCMA
, shrinkldaCMA
, svmCMA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,2:11])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run nnet (not tuned)
nnetresult <- nnetCMA(X=golubX, y=golubY, learnind=learnind, size = 3, decay = 0.01)
### show results
show(nnetresult)
ftable(nnetresult)
plot(nnetresult)
### in the space of eigengenes (not tuned)
golubXfull <- as.matrix(golubX[,-1])
nnetresult <- nnetCMA(X=golubXfull, y=golubY, learnind = learnind, eigengenes = TRUE,
size = 3, decay = 0.01)
### show results
show(nnetresult)
ftable(nnetresult)
plot(nnetresult)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.