knnCMA: Nearest Neighbours

Description Usage Arguments Value Note Author(s) References See Also Examples

Description

Ordinary k nearest neighbours algorithm from the very fast implementation in the package class.

For S4 method information, see knnCMA-methods.

Usage

1
knnCMA(X, y, f, learnind, models=FALSE, ...)

Arguments

X

Gene expression data. Can be one of the following:

  • A matrix. Rows correspond to observations, columns to variables.

  • A data.frame, when f is not missing (s. below).

  • An object of class ExpressionSet.

y

Class labels. Can be one of the following:

  • A numeric vector.

  • A factor.

  • A character if X is an ExpressionSet that specifies the phenotype variable.

  • missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K is the total number of different classes in the learning set.

f

A two-sided formula, if X is a data.frame. The left part correspond to class labels, the right to variables.

learnind

An index vector specifying the observations that belong to the learning set. Must not be missing for this method.

models

a logical value indicating whether the model object shall be returned

...

Further arguments to be passed to knn from the package class, in particular the number of nearest neighbours to use (argument k).

Value

An object of class cloutput.

Note

Class probabilities are not returned. For a probabilistic variant of knn, s. pknnCMA.

Author(s)

Martin Slawski ms@cs.uni-sb.de

Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de

References

Ripley, B.D. (1996)

Pattern Recognition and Neural Networks.

Cambridge University Press

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run k-nearest neighbours
result <- knnCMA(X=golubX, y=golubY, learnind=learnind, k = 3)
### show results
show(result)
ftable(result)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run knn
result <- knnCMA(X=khanX, y=khanY, learnind=learnind, k = 5)
### show results
show(result)
ftable(result)

chbernau/CMA documentation built on May 17, 2019, 12:04 p.m.