Description Usage Arguments Value Author(s) See Also Examples
Given two variables, the methods trains a classifier
(argument classifier
) based on these two variables
and plots the resulting class regions, learning- and test
observations in the plane.
Appropriate variables are usually found by GeneSelection
.
For S4 method information, s. Planarplot-methods
.
1 | Planarplot(X, y, f, learnind, predind, classifier, gridsize = 100, ...)
|
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
|
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
predind |
A vector containing exactly two indices that denote the two variables used for classification. |
classifier |
Name of function ending with |
gridsize |
The gridsize used for two-dimensional plotting. For both variables specified in |
... |
Further argument passed to |
No return.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de.
Idea is from the MLInterfaces
package, contributed
by Jess Mar, Robert Gentleman and Vince Carey.
GeneSelection
,
compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
, LassoCMA
,
nnetCMA
, pknnCMA
, plrCMA
,
pls_ldaCMA
, pls_lrCMA
, pls_rfCMA
,
pnnCMA
, qdaCMA
, rfCMA
,
scdaCMA
, shrinkldaCMA
, svmCMA
1 2 3 4 5 6 7 8 9 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.